Boundary effects in some stochastic geometric models

Stochastic Geometry Days 2024

Xiaochuan Yang (Brunel)

joint work with

Frankie Higgs and Mathew Penrose (University of Bath)

Largest nearest neighbour link

Given a point cloud $\mathcal X$ in a metric space, the LNNL tells us how far the most isolated point is from the others

- \bullet $L_n = \max_{x \in \mathcal{X}} dist(x, \mathcal{X} \setminus \{x\})$
- \bullet $\overline{L}_n = \inf\{r : \deg(x) \geq 1, \ \forall x \in \overline{G(\mathcal{X},r)}\}$
- \bullet $L_n = \inf\{r : \mathcal{X}(B(x,r)) \geq 2, \ \forall x \in \mathcal{X}\}\$

similarly *Ln*,*k*

Full coverage threshold

 $R_{n,k} = \inf\{r: \mathcal{X}(B(x,r)) \geq k, \ \forall x \in A\}$

- $L_n \leq R_{n,2}$
- \bullet $L_{n,k} \leq R_{n,k+1}$

Connectivity threshold

A graph is k -connected, denoted \mathcal{K}_k , if the removal of $k-1$ vertices does not disconnect the graph.

$$
M_{n,k}=\inf\{r:G(\mathcal{X},r)\in\mathcal{K}_k\}
$$

x-x x-x

 $L_{n,k} \leq M_{n,k}$

Result

Let $\mathcal{X}=\mathcal{P}_n.$ Under conditions on $A,$ we have the strong law where c depends on the geometry of $A.$ $\sim \frac{r c_{\perp} r_{\eta}}{1} \sim \frac{r c_{\perp} r_{\eta}}{1} \sim c$ nL_n^d *n* $\log n$ nM_n^d $\log n$ nR_n^d $\log n$

- $\operatorname{general} k=k(n)$
- binomial process
- non-uniform
- Penrose, PTRF'22, book
- Penrose, Y, Higgs, '23

Finite convex polytope

 $\text{Let } k = k(n) \sim \beta \log(n) \text{ with } \beta \in [0,\infty].$ Then

$$
c=\max_{\phi\in\Phi^*(A)}\frac{\hat{H}_\beta(D(\phi)/d)}{f_\phi\rho_\phi}
$$

- ${\hat H}_0(x) = x, {\hat H}_\infty(x) = 1$ (chg scale to $k(n)$ when $\beta = \infty$)
- $\Phi^*(A)$: faces of A , including A^o viewed as d -dim face
- $D(\phi)$ is the dimension of the face ϕ
- $f_\phi = \inf_{x \in \phi} f(x)$ where f is density
- $\rho_\phi = |B(o,1) \cap \kappa_\phi|$ angular volume of face ϕ

Proof: granulation

Want to show some threshold $\sim r_n$

- draw grid of spacing *εrn*
- random point "activates" closest grid point
- count relevant grid patterns

let's implement this twice, 1 for torus, 2 for metric space

$nL_n^d \geq c \log n$: torus *n*

- assume $\{L_n \leq r_n\}$ happens with $nr_n^d = c\log n$ *n*
- at each $\varepsilon_1 r_n$ lattice point, EITHER non-activated OR at least $\frac{d}{dx}$ cach c_1 , n tached point, Ξ , Ξ ,

 $\mathbb{P}[\ldots] = 1 - \mathbb{P}[\{\ldots\}^c | \{\ldots\}^c] \mathbb{P}[\{\ldots\}^c] \leq 1 - \eta \mathbb{P}[\{\ldots\}^c]$

keeps lattices distant $3r_n$ from each other, by independence

$$
(1\!-\!\dots)^{c_1r_n^{-d}}=O(\exp(-n^{1-\theta_d c}))\to 0
$$

provided $c < 1/\theta_d$

$$
nL_n^d \geq c \log n \text{: metric space}
$$

- a portion of A is r -packed with packing number $\Omega(r^{-b})$
- $\mu(B(x,r)) \leq ar^d$ for every x in that portion

$$
(1-\eta(nar^d)e^{-nar^d})^{c_1r_n^{-b}}=O(\exp(-n^{b/d-ac}))\to 0
$$

provided $c < (b/d)/a$

the ultimate lower bound is the max of these $(b/d)/a$ for all kinds of portions

 $nM_n^d \leq c \log n$: torus *n*

 \sup suppose $\{M_n > r_n\}$ with $nr_n^d = c\log n,$ then \sharp clusters $\geq 2,$ so one of the following happens

- isolated point ∃
- \exists non-isolated small clusters, $0 < diam \leq Kr_n$
- \exists two big clusters, $diam > Kr_n$

Implement granulation for each of the above cases. e.g. $\mathbb{P}[\exists iso] \leq r_n^{-d} \exp(-c\theta_d \log n) = n^{1-c\theta_d} \to 0$ provided $c>1/\theta_d.$

$nM_n^d \leq c \log n$: metric space *n*

- a portion of A is covered by $O(r^{-b})$ balls with radius r and $\mu(B(x,r)) \geq a r^d$ for each x in that portion $\mu(B(x,r)) \geq a r^d$
- $\mathbb{P}[\exists iso \text{ in portion}] \leq O(r_n^{-b}) \exp(-nar_n^d) = n^{b/d-ac} \to 0.$

provided $c > (b/d)/a.$

- $c > \max(b/d)/a$ over all portions
- small and big clusters are more complicated, draw

provided that A has matching covering and packing exponent and one can estimate Q $\mathsf{volume}\ \mathsf{of}\ \mathsf{balls}\ (G_r\setminus G)$ optimally (up to epsilon), all three thresholds are asymptotically the same

Isolated points and AB coverage Given \mathcal{X},\mathcal{Y} sampled from A

$$
T=\inf\{r:\mathcal{X}(B(y,r))\geq 1, \forall y\in\mathcal{Y}\}
$$

- lower bound of R_n , the minimal matching threshold, and connectivity threshold of BRGG
- related to AB-percolation, Iyer-Yogeshwaren

 $n\mathbb{E}[|x\in A:\mathcal{P}_n(B(x,r))=0|]=\int_A \exp(-n\theta_d r^d) n dx = \mathbb{E}[R]$

 $\mathcal{Y}(\text{uncovered}_{r_n}) \to Po(.) \text{ for some } r_n \Rightarrow T_n \stackrel{\sim}{\to} (2compt)Gumbel$ *d*

Papers

- **Largest nearest-neighbour link and connectivity threshold in a polytopal random sample** Journal of Applied and Computational Topology
- **Covering one point process with another** submitted

code:

https://github.com/frankiehiggs/connectivity-in-polytopes https://github.com/frankiehiggs/CovXY package: https://github.com/xiaochuany/geography

Bonne anniversaire, Anne!