Boundary effects in some stochastic geometric models

Stochastic Geometry Days 2024

Xiaochuan Yang (Brunel)

() joint work with

Frankie Higgs and Mathew Penrose (University of Bath)

Largest nearest neighbour link

Given a point cloud ${\mathcal X}$ in a metric space, the LNNL tells us how far the most isolated point is from the others

- $ullet \ L_n = \max_{x \in \mathcal{X}} dist(x, \mathcal{X} \setminus \{x\})$
- $ig| ullet \ L_n = \inf\{r: \deg(x) \geq 1, \ orall x \in G(\mathcal{X},r)\}$
- $ullet \ L_n = \inf\{r: \mathcal{X}(B(x,r)) \geq 2, \ orall x \in \mathcal{X}\}$

similarly $L_{n,k}$

Full coverage threshold

 $R_{n,k} = \inf\{r: \mathcal{X}(B(x,r)) \geq k, \ orall x \in A\}$

- $\bullet \quad L_n \leq R_{n,2}$
- $\bullet \,\, L_{n,k} \leq R_{n,k+1}$

Connectivity threshold

(i) A graph is k-connected, denoted \mathcal{K}_k , if the removal of k-1 vertices does not disconnect the graph.

$$M_{n,k} = \inf\{r: G(\mathcal{X},r) \in \mathcal{K}_k\}$$

X-X X-X

 $L_{n,k} \leq M_{n,k}$

Result

 \mathcal{Q} Let $\mathcal{X} = \mathcal{P}_n$. Under conditions on A, we have the strong law $rac{nL_n^d}{\log n}\sim rac{nM_n^d}{\log n}\sim rac{nR_n^d}{\log n}\sim c$ where c depends on the geometry of A.

- binomial process
- non-uniform

- general k = k(n) Penrose, PTRF'22, book
 - Penrose, Y, Higgs, '23

Finite convex polytope

Let $k=k(n)\sim eta\log(n)$ with $eta\in[0,\infty].$ Then

$$c = \max_{\phi \in \Phi^*(A)} rac{\hat{H}_eta(D(\phi)/d)}{f_\phi
ho_\phi}$$

- $\hat{H}_0(x)=x, \hat{H}_\infty(x)=1$ (chg scale to k(n) when $eta=\infty$)
- $\Phi^*(A)$: faces of A, including A^o viewed as d-dim face
- $D(\phi)$ is the dimension of the face ϕ
- $f_{\phi} = \inf_{x \in \phi} f(x)$ where f is density
- $ho_{\phi} = |B(o,1) \cap \kappa_{\phi}|$ angular volume of face ϕ

Proof: granulation

Want to show some threshold $\sim r_n$

- draw grid of spacing $arepsilon r_n$
- random point "activates" closest grid point
- count relevant grid patterns

let's implement this twice, 1 for torus, 2 for metric space

$nL_n^d \geq c\log n$: torus

- assume $\{L_n \leq r_n\}$ happens with $nr_n^d = c\log n$
- at each $arepsilon_1 r_n$ lattice point, EITHER non-activated OR at least two points within $(1+2\sqrt{d}\,arepsilon_1)r_n$

 $\mathbb{P}[.\cup..] = 1 - \mathbb{P}[\{..\}^c | \{..\}^c] \mathbb{P}[\{..\}^c] \leq 1 - \eta \mathbb{P}[\{..\}^c]$

• keeps lattices distant $3r_n$ from each other, by independence

$$(1{-}\dots)^{c_1r_n^{-d}}=O(\exp(-n^{1- heta_dc})) o 0$$

provided $c < 1/ heta_d$

$$nL_n^d \geq c\log n$$
: metric space

- a portion of A is r-packed with packing number $\Omega(r^{-b})$
- $ig egin{array}{ll} ig egin{array}{ll} \mu(B(x,r)) \leq ar^d & ext{for every } x & ext{in that portion} \end{array}$

$$(1-\eta(nar^d)e^{-nar^d})^{c_1r_n^{-b}}=O(\exp(-n^{b/d-ac}))
ightarrow 0$$

provided c < (b/d)/a

- the ultimate lower bound is the max of these (b/d)/a for all kinds of portions

$nM_n^d \leq c\log n$: torus

suppose $\{M_n>r_n\}$ with $nr_n^d=c\log n$, then \sharp clusters ≥ 2 , so one of the following happens

- \exists isolated point
- \exists non-isolated small clusters, $0 < diam \leq Kr_n$
- ullet \exists two big clusters, $diam > Kr_n$

 $\mathbb{P}[\exists iso] \leq r_n^{-d} \exp(-c heta_d\log n) = n^{1-c heta_d} o 0$ provided $c > 1/ heta_d.$

$nM_n^d \leq c\log n$: metric space

- a portion of A is covered by $O(r^{-b})$ balls with radius r and $\mu(B(x,r)) \geq ar^d$ for each x in that portion
- $\bullet \ \mathbb{P}[\exists iso \ \text{in portion}] \leq O(r_n^{-b}) \exp(-nar_n^d) = n^{b/d-ac} \rightarrow 0$

provided c > (b/d)/a.

- union bound: $c > \max(b/d)/a$ over all portions
- small and big clusters are more complicated, draw

 \bigcirc provided that A has matching covering and packing exponent and one can estimate volume of balls ($G_r\setminus G$) optimally (up to epsilon), all three thresholds are asymptotically the same

Isolated points and AB coverage Given \mathcal{X}, \mathcal{Y} sampled from A

$$T = \inf\{r: \mathcal{X}(B(y,r)) \geq 1, orall y \in \mathcal{Y}\}$$

- lower bound of R_n , the minimal matching threshold, and connectivity threshold of BRGG
- related to AB-percolation, Iyer-Yogeshwaren

 $n\mathbb{E}[|x\in A:\mathcal{P}_n(B(x,r))=0|]=\int_A \exp(-n heta_d r^d)ndx=\mathbb{E}[x]$

 $\left(\mathcal{Y}(\mathrm{uncovered}_{r_n})
ightarrow Po(.\,) ext{ for some } r_n \Rightarrow T_n \stackrel{d}{
ightarrow} (2compt)Gumbel
ight)$

Papers

- Largest nearest-neighbour link and connectivity threshold in a polytopal random sample *Journal of Applied and Computational Topology*
- Covering one point process with another *submitted*

code:

https://github.com/frankiehiggs/connectivity-in-polytopes https://github.com/frankiehiggs/CovXY package: https://github.com/xiaochuany/geography

Bonne anniversaire, Anne!