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ABSTRACT.  Although the classical Fractional Brownian Motion is ofien used o describe poros
iy, it is not adapted o anisotropic situations. In the present work, we study a class of Gaussian
Jields with stationary increments and “spectral density.” They present asymplotic self similarity
properties and are good candidates to model a homogeneous anisotropic material, or its radio
grapliic images. Unfortunately, the paths of all Gaussian fields with stationary increments have the
same apparent regularity in all directions (except at most one). Hence we propose liere a procedure

to recover anisotropy from one realization: computing averages over all the lyperplanes which

are orthogonal 10 a fixed direction, w

a process whose Holder regularity depends explicitly on

e asymptotic behavior of the spectr

nsity in this direction.

Motivation and Introduction

Thirty years ndelbrot and Van-Ness [17] have initiated the description of 1-
dimensional data through Fractional Brownian Motion (FBM). Sin
is often used for the description of roughness or porosity of some d-dimensional material




1. Introduction

Let X = {X(¢), t € RV} be a random field with values in R¢ and let T C RV
be a compact interval.
We are interested in the following random sets:

e Range X(T)={X(t):teT}

e Graph GrX(T) = {(1,X(1)) : t € T}

o Levelset X '(x)={reRN:X(r)=x}

o Excursionset X~!(F) = {re R : X(r) € F}, VF C R%.
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1. Introduction

Let X = {X(¢), t € RV} be a random field with values in R¢ and let T C RV
be a compact interval.
We are interested in the following random sets:

e Range X(T)={X(t):teT}

e Graph GrX(T) = {(1,X(1)) : t € T}

o Levelset X '(x)={reRN:X(r)=x}

o Excursionset X~!(F) = {re R : X(r) € F}, VF C R%.
Ifd = 1 and F = [u,00), then X~!(F) N T is the excursion set

Ex(u) = {t € T: X(t) > u}

considered in Prof. Céline Duval’s lectures.

@ The set of self-intersections, . . ..
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The properties of these random sets depend on the smoothness or roughness of
the sample function X (7).

e If X(7) is not smooth, one uses fractal geometry to study the random sets
generated by X.

e If X(¢) is smooth, one uses integral geometry to characterize the topolog-
ical structures of the random sets.

It is known that the expected Euler characteristic of the excursion set Ex(u) is
closely related to the exceedence probability

IP{ sup X(#) > u},

teT

which is important in many applications.
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Gaussian fields: some examples

As in Bonami and Estrade (2023), we consider a centered Gaussian random
field X = {X(t), t+ € RV} with stationary increments and X(0) = 0. If
R(s,1) = E[X(5)X(r)] is continuous, then R(s, ) can be written as

R(s,1) = /R N(ei@ AN 1) (e N — 1) A(dN),

where A(d\) is a Borel measure which satisfies

/ |)\|2 A(dN) < o0 (D)
ry 1+ |)\|2 '

The measure A is called the spectral measure of X.
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It follows that X has the stochastic integral representation:
4 itA) _
X(t) = / (e 1) M(dN),
RN

where = denotes equality of all finite-dimensional distributions, M (d\) is a
centered complex-valued Gaussian random measure with A as its control mea-
sure.

Example 1.1. If A has a density function
fir(N) = e(H,N)|A|~ ),

where H € (0, 1) and ¢(H,N) > 01is a constant, then X is fractional Brownian
motion with index H.
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Example 1.2. A large class of Gaussian fields can be obtained by letting spec-
tral density functions satisfy (1) and

1

f()\)xm, VAERY |\ >1, Q)
where (1, ..., By) € (0,00)" and
M
fy>jzlﬁj.

This last condition is necessary for f € L*(RV).
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More examples

The following anisotropic random fields do not have stationary increments.

e Fractional Brownian sheet W# = {W# (), € RV} is a mean 0 Gaussian
field in R with covariance function

E [WH(s) H

J=1

(s + 1627 — |sj — )

[\ \

where H = (Hy,...,Hy) € (0,1)V.
For all constants ¢ > 0,

{WH(cEr), 1 e RV} £ {eWH (1), 1 € RV},

where E = (a;) is the N x N diagonal matrix with a;; = 1/(NH;) for all
1 <i<Nanda; =0ifi #].
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@ Solution to stochastic heat equation:

ou O%u

E(I, X) = ) (t,x) + W(t X),

where 7 > 0, x € R and W(z, x) is a space-time white noise.

@ Operator-scaling fields: Biermé, Meerschaert and Scheffler (2007).
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2. Regularity properties

We consider a Gaussian field X = {X(¢),# € RV} with stationary increments
such that its spectral density satisfies (1) and

1

f“)xm’ VAERY, N >1, 3)
where (B1,.. ., By) € (0,00)" and
N
’Y>;Bj

are constants.

A similar example for N = 2 was considered by Bonami and Estrade (2003).
They established, among many other interesting results, the Holder continuity
of the sample functions of X(z).
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Theorem 2.1. [Xue and Xiao, 20011]

Let X = {X(t),t € RV} be a centered Gaussian field with stationary incre-
ments and spectral density satisfying (3).
(i) Foranyj € {1,...,N},if

(7~

then the partial derivative 0X(¢)/0t; is continuous almost surely. In particular,
if (4) holds for all 1 < j < N, then almost surely X () is continuously differen-
tiable.
(ii) If

;) @

\\Mz

N
a4 <

then the sample function X(7) is not differentiable in any direction.
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Exact uniform modulus of continuity

Under condition (5) with strict inequality, we have

Theorem 2.2 [Meerschaert, Wang and X., 2013]

The exact modulus of continuity of X(¢) is given by

su X(t+s)— X(t
Jim sup ptET,sE[O,h]’ ( ) )l . 6)

=0 p(0,h)/log(1 + p(0,h)~T)

In the above, k € (0, 00) is a constant, p is the metric on RY defined by

N
p(s,t) = lsi — 1™, @)
j=1
where for every 1 <j < N,
N
B 1
=5 (=3 7)) ®)
= 3
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Meerschaert, Wang and X. (2013) proved (6) under the following general con-
ditions:

Let H = (Hy,...,Hy) € (0,1)" be a constant vector. There exist positive and
finite constants ¢y, ..., c4 such that

(A1) Foralls,t € T, E[X(t)*] > ¢| and

exp(s. )2 < E [(X(s) - X(1))2] < espls, 1)

(A2) Foralln>landu,t',...," €T,

2H-
Var(X(u)‘X(tl),. ) > cq ergklgn‘u]—( !

where Var(X(u) | X('),...,X(")) denotes the conditional variance of
X(u) given X('), ..., X(1").
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Local oscillations

For comparison purpose, we also state the following results on the local oscil-
lations. They are also useful for study some fractal properties of X(¢) [e.g., the
set of “fast points™].

Theorem 2.3 [Lee and X. 2021]

Let X = {X(¢), € R} be a centered Gaussian field that satisfies (A1) and
(B1) below. Then for every 1 € T, there is a constant ry = r2(1°) € (0, 00)
such that

X —X({°
limsup sup (" +5) ()]
|h[40  s€[—h, ] ©1(s)

= K1, a.s., )

where

gol(s)zp(O,s)[loglog (1+W>] , Vs e RV
=115
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Theorem 2.4 [Lee and X. 2021]

Let X = {X(#),t € RV} be a centered Gaussian random field that satisfying
conditions (A1), (A2) and (B1) below. Then for every ¥ € T, there is a con-
stant k3 = #3(1°) € (0, 00) such that

lim inf MaxXs. ,(s,0)<r ‘X(to + S) - X(to)‘
r—0 r(loglog 1/r)~1/2

= K3, a.s. (10)

4

Chung’s LIL describes the smallest local oscillation of X(z), which is useful
for studying hitting probabilities and fractal properties of X.
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3. Rough case: hitting probabilities and the Hausdorff dimension of
X-1(F)

Theorem 3.1 [Biermé, Lacaux and X. (2009)]

Let X = {X(¢),t € RV} be a Gaussian field defined by

X(1) = (X1(2), ..., Xa(1)), re RV, (11)

where X1, ..., X, are independent copies of a centered Gaussian field X that
satisfies Conditions (A1) and (A2) with n = 1. Then V Borel set F C R,

esCT2(F) <P{X(T)NF # 0} < ce HE(F), (12)

where Q = Z,N:1 Hij, C9=2is (d — Q)-dimensional Riesz capacity and H?~¢
is (d — Q)-dimensional Hausdorff measure.

4
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Remarks. Theorem 3.1 implies that
o If C*"2(F) > 0, then P{X(T) N F # 0} > 0.
o If H9(F) =0, then P{X(T)NF # 0} = 0.

However, when H?~2(F) > 0 (which holds when d = Q and F # ()), Theorem
1.1 is not informative.

It is an open problem if H¢~C(F) in (12) can be replaced by C¢/~9(F), except
in the following two cases:
@ The Brownian sheet: Khoshnevisan and Shi (1999).

@ The case F is a singleton: Dalang, Mueller and X. (2017): if d = Q, then
for every x € R¢,

P{X(T)N{x} #0} =P{3reT:X(r) =x} =0.
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Hausdorff dimension of the excursion set

Theorem 3.2 [Biermé, Lacaux and X. (2009)]

Let F C R4 be a Borel set such that Zjv: 1 ;71 > d — dimF'. Then with positive
probability,

k
H
dim(X~'(F)NT)= min {ZH](—FN—IC—Hk(d—dimF)}.
=

4

More properties such as uniform Hausdorff dimension result for X! (F) or the
exact Hausdorff measure of the X~!(x) can be obtained by studying the local
times of X.
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Theorem 3.1 was applied by Jaramillo and Nualart (2020) to studying the col-
lision of eigenvalues of random matrices with Gaussian random field entries.

Song, X. and Yuan (2021) extended the work of Jaramillo and Nualart (2020)
to multiple spectral collisions, and applied Theorem 3.2 to determine the Haus-
dorff dimension of the set of times of spectral collisions.

However, due to the lack of information in Theorem 3.1 in the critical case
when

C¥C(F)=0 and H*(F) >0,
they were not able to solve the problem on the existence of spectral collisions

completely.

This motivated Lee, Song, X. and Yuan (2023) to further study the hitting
probability problem in the critical dimension case, and apply the result to solve
the problem on collision of eigenvalues.
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A result for the critical dimension

Let X = {X(t),t € R} be a Gaussian field in R? defined (11). We use the
setting in Dalang, Mueller and X. (2017).

The conditions (B1)-(B3) are formulated in a general way so that they cover
many Gaussian random fields and solutions to SPDEs.

They are satisfied by a fractional Brownian field of index H € (0, 1):

BH(t) — / (ei(t,x> o 1) W(dx)
RN

e

where W is a complex-valued Gaussian random measure with Lebesgue control
measure.
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(B1) There is a Gaussian random field {W(A,7) : A € B(Ry),t € RV} satis-
fying the following two conditions:

(b1) For all t € R¥, A +» W(A,¢) is an R?valued Gaussian noise with a
control measure v; such that W(R,,7) = X(z) and when AN B = 0,
W(A,-) and W(B, -) are independent.

(b2) 3 ap>0,¢7>0,7>0,j=1,...,N,such that forallag < a < b <
+oo and all s := (sy,...,sy),7:= (t1,...,ty) € T (a compact interval),

W (@ b),s) — X(s) — W(la,b),1) + X(1) .

N
< C7[Zaw\sj — 1] —l—bfl],

J=1

[W([0,a0),5) — W([0,a0),1)]| > < C7Z|SJ — 1,

where || Y|z := (E[Y? + - - + ¥2])"/%.
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Denote
Hi=(1+7)"" 1<j<N. (13)

These parameters are useful for characterizing various properties of the random
field X.

The following lemma bounds the canonical metric induced by || X(s) — X (7) ||
by using the metric p.

Under Assumption (B1), for all 5,7 € T with p(s, 1) < min{aal, 1}, we have

HX(s) —X(t)HL2 < dcyp(s,t).

Condition (B1) indicates that X(z) can be approximated by W([a, b],t). The
following lemma quantifies the approximation error.
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Lemma 3.4 [Dalang, Mueller, X. (2017)]

Assume that (B1) holds. Forb > a > 1 and r > 0, set

N

—i_ =il _

A:E ali A +b L
J=1

There are constants Agy, K and ¢ such that for A < Ayr and
u> KAlogl/2 (£> ,
A

we have for all ° € T,

]P’{ sup |X(t) — X(°) — (W([a, b],1) — W([a,b],to))} > u}
teS(,r)

2

u
Sexp(—m*z)’

where S(0,r) = {t € T : p(t, 1) < r}.
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We further impose the following two assumptions on X.

(B2) 3 a constant cg > 0, such that ||X;(z)||,2 > cg for all 1 € T(%0) (the €o-
neighborhood of ) and all 1 < i < N.

(B3) 3 aconstant pg > 0 with the following property. For ¢t € T, there exist
{=1(t) € T, § = &(t) € (Hj, 1] for 1 <i < NandC = C(t) >0,
such that

E (%) (%) - X3)] | < €3 lsy — 517,

forall 1 <i< N andalls,5 e T(€) with

max{p(t, S)a p(l, E)} < 2po.
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The following is the main result.

Theorem 3.5 [Lee, Song, X. and Yuan (2023)]

Assume (B1) - (B3) hold and suppose d > Q. Let F C R? be a bounded set
that satisfies the following condition: 3 constants 6 € [0,d — Q], Cr € (0, 0),
and k € [0, (d — #)/Q) such that

Aa(F) < Cprt=? (loglog(1/r))" (14)

for all » > 0 small, where )\, is the Lebesgue measure on RY and F(") = {x €
R? : infyep [x — y| < r} is the (closed) r-neighborhood of F. Then

X' F)NT =0, as.

Remark. Eq. (14) implies that dimyF < 6, where dimy; denotes the upper
Minkowski dimension, and allows F to have positive #-dimensional Hausdorff
measure.
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The following corollary shows two cases that could not be handled by Theorem
3.1.

Corollary 3.6

Assume (B1)-(B3) hold and F C R is a bounded set.

(i) Ifd > Q,dimF = d — Q and (14) holds with # = d — Q and a constant
k<1,then X' (F)NT = a.s.

(ii) If d = Q and F satisfies (14) with & = 0 and a constant k < 1, then
XY F)NT=0as.

4

In particular, (ii) extends the result for singleton F = {x} in Dalang, Mueller
and X. (2017) to uncountable infinite sets.
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The key ingredient for proving Theorem 3.5 is the following proposition proved
in Dalang, Mueller and X. (2017), which is analogous to Proposition 4.1 of Ta-
lagrand (1995).

Proposition 3.7

Assume (B1) hold. Then there exist constants K € (0, 00) and dp € (0, 1] such
that for any ro € (0,0p) and r € T,

2 _I/Q
P 3r e [ry,ro], sup  |X(s) — X(1)] SKr<log10g1/r)
SET:p(s,1)<r

> 1 oxp (-~ Viog1/m).

4

Based on Proposition 3.7 and other properties of the Gaussian random field
X, we can construct an economic random covering for X! (F) N T and prove
Theorem 3.5.
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4. The mean Euler characteristic of Ey(u«)

When the sample function X(-) € C*(R") and is a Morse function a.s., Cheng
and Xiao (2016) computed the expected Euler characteristic of Ex(u):

E{p(Ex(u))}

N
= Z P(X(t) > u, VX(t) € E({t})) +Z Z (2n k/2|Aj|1/2

{t}edT k=1JE€OT

& Aj—A
X/dt/ dx// dyjldyJN—kw
J u E(J) Vi

X
X Hk<; +%Cr ()yy, + -+ %CJN—k(t)yjN‘k)
t
X PX(0) X5, (00 Xry_, () (CR T ,yJN7k|VX|J(t) =0),

and prove that it approximates the excursion probability:

1[»{ sup X(1) > u} = B{p(Ex()}(1 + 0(e™")), asu — oo.
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Thank you for your attention!
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Happy birthday, Anne!
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