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Determinantal point processes

DPPs are a family of repulsive point processes.

Introduced by O. Macchi in 1975 to model fermion systems in theory
of quantum particles.
Used for statistical purposes to model repulsive point data (e.g. trees,
cells...)
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Determinantal point processes
We write [n] = {1, · · · , n}

Definition
Let K be an n × n matrix. We say that X is a determinantal point process
with kernel K, written X ∼ DPP(K ), if for all S ⊂ [n],

P(S ⊂ X ) = det(KS) where KS = (Ki ,j)i ,j∈S

P(i ∈ X ) = Ki ,i .

P({i , j} ⊂ X ) − P(i ∈ X )P(j ∈ X ) = det
(

Ki ,i Ki ,j
Kj,i Kj,j

)
− Ki ,iKj,j .

∀S ⊂ [n], X ∩ S ∼ DPP(KS).

Proposition
If K is a symmetric matrix then the DPP with kernel K is well-defined if
and only if the eigenvalues of K are in [0, 1].
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Example

Simulation of a DPP on {0, 1
30 , · · · , 1}2 with kernel

K (x , y) = 0.02e− ∥y−x∥2
0.018 .
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Two problems related to positive coupling of DPPs.

Proposition (Lyons (2002))
Let K1, K2 be two n × n symmetric positive semidefinite matrices such that

0 ≼ K1 ≼ K2 ≼ In

Then, the determinantal measure with kernel K1 is stochastically
dominated by the determinantal measure with kernel K2.

By Strassen’s theorem, there exists a coupling (X , Y ) ∼ P such that
X ∼ DPP(K1), Y ∼ DPP(K2) and P(X ⊂ Y ) = 1.

Question: Is there a natural way of constructing such a coupling?
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Two problems related to positive coupling of DPPs.

Figure: Nest locations of two species of ants at a site in northern Greece.
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A natural coupling

Coupling of two point processes on [n] ⇔ Point process on [2n]

[2n] ↔ [n] × [n]
X ↔ (X1, X2) where

{
X1 = X ∩ [n];
X2 =

{
i − n, i ∈ X ∩ {n + 1, · · · , 2n}

}
.

Let K1, K2 ∈ Mn(R) and (X1, X2) ∼ DPP(K) where

K =
(

K1 ∗
∗ K2

)
∈ M2n(R).

X1 ∼ DPP(K1) and X2 ∼ DPP(K2).
P(i ∈ X1, j ∈ X2) − P(i ∈ X1)P(j ∈ X2) = −Ki ,j+nKj+n,i

If K is symmetric then only negative cross-correlations are possible.
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Example

Simulation of a DPP on ({0, 1
30 , · · · , 1}2)2 with kernel K =

(
K K
K K

)
where

K (x , y) = 0.008e− ∥y−x∥2
0.023

DPP coupling simulation Inclusion probability for the orange DPP
conditionally to the blue DPP

Arnaud Poinas Nonsymmetric DPP coupling May 29th, 2024 8 / 32



Proposed solution: Using nonsymmetric kernels!

First major problem: The well-definedness of DPPs.

Definition
We say that an n × n matrix is a DPP kernel if the associated
determinantal measure is a probability measure.
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Two methods of constructing DPPs with nonsymmetric kernels

Proposition
Let K be a DPP kernel and D be a diagonal matrix of same size. Then
DKD−1 is also a DPP kernel and DPP(K ) d= DPP(DKD−1)

Proof.
Direct consequence of the fact that

det((DKD−1)S) =
∏

i∈S Di ,i∏
i∈S Di ,i

det(KS)
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Two methods of constructing DPPs with nonsymmetric kernels

Proposition (Borodin et al., 1999)
Let X ∼ DPP(K ), S ⊂ [n] and define the particle-hole transformation

Y = (X ∩ Sc) ∪ (X c ∩ S).

Then Y is a DPP with kernel

K̃ = (In − D(1S))K + D(1S)(In − K )

where D(1S) is a diagonal matrix with Di ,i = 1i∈S .

As a consequence we can write

P(X = Sc) = P([n] ⊂ Y ) = det(K̃ )
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Proposition (Generalized particle-hole involution)
Let X ∼ DPP(K ). Let p1, · · · , pn ∈ [0, 1]n and Bi ∼ b(pi) with
B1, · · · , Bn and X independent then define

Y = {i ∈ [n] s.t. i ∈ X and Bi = 0 or i /∈ X and Bi = 1}

Then Y is a DPP with kernel

(In − D(p))K + D(p)(In − K )

where D(p) is a diagonal matrix with Di ,i = pi .
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A few examples in the literature

Schur measures on partitions (Okounkov (2000))
One dependant process

Proposition (Borodin, A., Diaconis, P. and Fulman, J. (2009))
Let X1, · · · , Xn ∈ {0, 1} be a 1-dependant process (Xi ⊥⊥ Xj if |j − i | ⩾ 2)
and X = {i s.t. Xi = 1}. Then X is a DPP with kernel of the form

K =


∗ · · · · · · ∗

−1 . . . ...
. . . . . . ∗

0 −1 ∗



Arnaud Poinas Nonsymmetric DPP coupling May 29th, 2024 13 / 32



Outline

1 Intro
Determinantal point processes
Motivation
A natural coupling

2 DPPs with nonsymmetric kernels
Known results
First examples of couplings
Characterization using the theory of P0 matrices

3 Construction of positive coupling of DPPs
Simulation algorithm
Two different constructions
Numerical results

4 Conclusion



Independent coupling

Proposition
Let K ∈ Mn(R) be a DPP kernel and define

K =
(

K 0
∗ K

)
.

Then K is a DPP kernel.

If (X1, X2) ∼ DPP(K) then
X1 ∼ DPP(K );
X2 ∼ DPP(K );
X1 ⊥⊥ X2.
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Repulsive coupling

Proposition (Affandi et al. (2012))
Let K ∈ Mn(R) such that 2K is a DPP kernel and define

K =
(

K K
K K

)
.

Then K is a DPP kernel.

If (X1, X2) ∼ DPP(K) then
X1 ∼ DPP(K );
X2 ∼ DPP(K );
X1 ∪ X2 ∼ DPP(2K );
P(X1 ∩ X2 = ∅) = 1.
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Most attractive coupling

Proposition
Let K ∈ Mn(R) be a DPP kernel and define

K =
(

K In − K
K In − K

)
.

Then K is a DPP kernel.

If (X1, X2) ∼ DPP(K) then
X1 ∼ DPP(K );
X2 ∼ DPP(In − K );
P(X1 = X c

2 ) = 1.
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Link with P0 matrices

Proposition
Let X ∼ DPP(K ). If In − K is invertible then for all S ⊂ [n],

P(X = S) = det(LS)
det(In + L) ,

where L = K (In − K )−1.

Since
∑

S⊂[n] det(LS) = det(In + L) is true for any matrix then the
determinantal probability measure is well defined if and only if

∀S ⊂ [n], det(LS) ⩾ 0 ⇔ L is a P0 matrix.

Theorem (Coxson (1993))
The problem of testing if a given matrix is P0 is co-NP-complete.
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Necessary and sufficient conditions

Proposition
Let L be an n × n matrix. Then L is a P0 matrix if and only if one of the
following assertions is satisfied:

1 ∀p ∈ {0, 1}n, det
(
D(p)In + (In − D(p))L

)
⩾ 0

2 ∀p ∈]0, 1[n, det
(
D(p)In + (In − D(p))L

)
> 0
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Necessary and sufficient conditions

Proposition
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Necessary condition

Proposition
Let λ ∈ C∗ be an eigenvalue of a P0 matrix L of size n × n then

|arg(λ)| ⩽ π − π

n .

In particular, if λ ∈ R then λ ⩾ 0.
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Necessary condition

Proposition
Let λ ∈ C be an eigenvalue of a DPP kernel K of size n × n then

λ ∈ BC

(
1
2 + 1

tan
(

π
n
) i , 1

2 sin(π
n )

)
∪ BC

(
1
2 − 1

tan
(

π
n
) i , 1

2 sin(π
n )

)
.

In particular, if λ ∈ R then λ ∈ [0, 1].
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Sufficient conditions

Proposition
Let L be an n × n matrix. If one of the following assertions is satisfied then
L is a P0 matrix.

1 For all i ∈ [n],
Li ,i ⩾ 0 and Li ,i >

∑
j ̸=i

|Li ,j |.

2 L + LT is positive semi-definite.

Remark: If K = 1
2 In + M is symmetric then K is a DPP kernel if and only

if ∥M∥2 ⩽ 1
2 . So, this condition includes all symmetric DPP kernels!
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Sufficient conditions

Proposition
Let K be a DPP kernel and λ ∈ [0, 1] then λK + (1 − λ)1

2 In is a DPP
kernel.

⇒ The set of DPP kernels is a star-convex set centered at 1
2 In and

containing the ball with center 1
2 In and radius 1

2 for the ∥.∥2 norm.
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An additional result

Definition
Let M ∈ Mn(C) and S ⊂ [n] such that MS is invertible. With the right

permutation of rows and columns we can write M as
(

MS MS,Sc

MSc ,S MSc

)
.

We define the principal pivot transform of M relative to S as

ppt(M, S) :=
(

M−1
S −M−1

S MS,Sc

MSc ,SM−1
S MSc − MSc ,SM−1

S MS,Sc

)

Let x , y ∈ Rn written as x =
(

xS
xSc

)
and y =

(
yS
ySc

)
. Then,

(
yS
ySc

)
= M

(
xS
xSc

)
⇔

(
xS
ySc

)
= ppt(M, S)

(
yS
xSc

)
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Proposition
Let X ∼ DPP(K ), S ⊂ [n] and define

Y = (X ∩ Sc) ∪ (X c ∩ S) ∼ DPP(K̃ ).

Assume that In − K and In − K̃ are invertible and define

L := K (In − K )−1 and L̃ := K̃ (In − K̃ )−1.

Then L̃ = ppt(L, S).

The Particle-Hole involution theorem is therefore closely linked to

Theorem (Tsatsomeros (2000))
Let M ∈ Mn(R) be a P0 matrix and S ⊂ [n] such that MS is invertible.
Then, ppt(M, S) is a P0 matrix.
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Simulation algorithm

Define K•,i :=

K1,i
...

Kn,i

 and Ki ,• :=
(
Ki ,1 · · · Ki ,n

)
.

Proposition
If X ∼ DPP(K ) then

X |i /∈ X ∼ DPP
(

K − 1
Ki ,i − 1K•,iKi ,•

)

X |i ∈ X ∼ DPP
(

K − 1
Ki ,i

K•,iKi ,•

)
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Simulation algorithm

Algorithm 1: Poulson (2020)
Data: K , a DPP kernel of size n × n.
X = ∅.
for i = 1 to n do

pi = Ki ,i
B ∼ b(pi)
if B = 1 then

X = X ∪ {i}
K = K − 1

Ki,i
K•,iKi ,•

else
K = K − 1

Ki,i −1K•,iKi ,•
return X
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General construction

Let K be a symmetric matrix with eigenvalues in [0, 1].
Let (X1, X2) ∼ DPP(K) with

K =
(

K M
N K

)
.

Since
P(i ∈ X1, j ∈ X2) − P(i ∈ X1)P(j ∈ X2) = −Mi ,jNj,i ,

then in order to have positive cross correlations we thus need to have
Mi ,iNi ,i ⩽ 0 for all i .
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Method 1: N = −M

Proposition
The kernel

K =
(

K M
−M K

)
is a DPP kernel if and only if the symmetric matrix

K̃ =
(

K M
M In − K

)

has eigenvalues in [0, 1]. In particular,

(X1, X2) ∼ DPP(K) ⇔ (X1, X c
2 ) ∼ DPP(K̃).
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Method 2: M and −N are symmetric
positive semidefinite and commute with K

There exist an orthogonal matrix P and λ1, · · · , λn ∈ [0, 1],
µ1, · · · , µn ∈ R+ and ν1, · · · , νn ∈ R− such that

K = PD(λ)PT , M = PD(µ)PT and N = PD(ν)PT

hence K = 1
2 I2n + M where

M =
(

P 0
0 P

)(
D(λ − 1/2) D(µ)

D(ν) D(λ − 1/2)

)(
PT 0
0 PT

)
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The 2n singular values squared of M corresponds to the eigenvalues of
MMT and thus the 2 eigenvalues of the n matrices(

(λi − 1/2)2 + µ2
i (µi + νi)(λi − 1/2)

(µi + νi)(λi − 1/2) (λi − 1/2)2 + ν2
i

)

which are

(λi − 1/2)2 + 1
2

µ2
i + ν2

i ± |µi + νi |

√
4
(

λi − 1
2

)2
+ (µi − νi)2


⇒ Taking µi and νi such that this expression is ⩽ 1

4 yields a DPP kernel.
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Example

DPP on ({0, 1
30 , · · · , 1}2)2 with kernel K =

(
K M
N K

)
where

K (x , y) = 0.02e− ∥y−x∥2
0.018 and M, N generated by the second method.

DPP coupling simulation Inclusion probability for the orange DPP
conditionally to the blue DPP
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Example

DPP on ({0, 1
30 , · · · , 1}2)2 with kernel K =

(
K M
N K

)
where

K (x , y) = 0.02(
1+
( ∥y−x∥

0.075

)2
)1.1 and M, N generated by the second method.

Figure: DPP coupling simulation
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There is a natural way of constructing DPP couplings but it requires
nonsymmetric kernels to get attraction.
There is a lot in common between the theory of DPPs and the theory
of P0 matrices.
An easy way to generate a DPP kernel is to take K = 1

2 In + M with
∥M∥2 ⩽ 1

2 .
We still need to find a way to control the strength of attraction in
DPP couplings generated this way.
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Thank you!



Proposition
Let K1, K2 ∈ Mn(R) be a DPP kernel and define

K =
(

K1 In − K2
−K1 K2

)
.

If K is a DPP kernel then if (X1, X2) ∼ DPP(K) then X1 ∼ DPP(K1),
X2 ∼ DPP(K2) and X1 ⊂ X2 almost surely.

Simulations shows that it works in a lot of case when 0 ≼ K1 ≼ K2 ≼ In
but not always.
Open problem: For which K1 ≼ K2 is K a DPP kernel?
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Remark
If K = 1

2(In − M) is a DPP kernel such that In − K is invertible then
L = (In − M)(In + M)−1 is the Cayley transform of M.
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