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1. Introduction

Denote all functions g : Z→ R by S(Z) and consider operators from S(Z) to S(Z):
backshift

Tg(t) = g(t− 1)

its jth power
T jg(t) = g(t− j)

with T 0 = I identity, T 1 = T

its polynomial, e.g., discrete derivative

(I − T )g(t) = g(t)− g(t− 1)
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For d ∈ (−1, 1), d 6= 0, the fractional operator is defined by

(I − T )dg(t) =
∞∑
j=0

ψj(d)T jg(t) =
∞∑
j=0

ψj(d)g(t− j)

through binomial expansion

(1− z)d =
∞∑
j=0

ψj(d)zj , z ∈ C, |z| < 1,

where
ψj(d) = Γ(j − d)

Γ(j + 1)Γ(−d) =
∏

0<i≤j

i− 1− d
i

, j = 0, 1, 2, . . .
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Let d ∈ (−1/2, 1/2), d 6= 0 and {ε(t), t ∈ Z} be a white noise, i.e. a sequence of
random variables such that

E[ε(t)] = 0, E[ε(t)ε(s)] = 1(t = s), t, s ∈ Z.

Then
X(t) = (I − T )−dε(t), t ∈ Z,

is an ARFIMA(0, d, 0) process, i.e. a stationary solution of the equation

(I − T )dX(t) = ε(t), t ∈ Z.

Granger, Joyeux 1980, Hosking 1981
Convergence of series of random variables in mean square
Long-range/negative dependence
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Problem
Extend fractional operators

(I − T )d =
∞∑
j=0

ψj(d)T j , d ∈ (−1, 1), d 6= 0,

to more general T : S(Zν)→ S(Zν) for ν ≥ 1.
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2. Fractional integration on Zν

Let {Sj , j = 0, 1, . . . } be a random walk on Zν with S0 = 0 and

p(s) = P(S1 = s), s ∈ Zν .

We introduce

Tg(t) =
∑
s∈Zν

p(s)g(s + t) = E[g(S1 + t)], t ∈ Zν .

Example 1

(I − T )d in dimension ν = 1 in ARFIMA(0, d, 0) with

Tg(t) = g(t− 1), t ∈ Z,

corresponds to
p(−1) = 1.
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Let {Sj , j = 0, 1, . . . } be a random walk on Zν with S0 = 0 and

p(s) = P(S1 = s), s ∈ Zν .

We introduce

Tg(t) =
∑
s∈Zν

p(s)g(s + t) = E[g(S1 + t)], t ∈ Zν .

Example 2

Fractional Laplacian (I − T )d in dimension ν ≥ 1 with

Tg(t) = 1
2ν

ν∑
i=1

(g(t− ei) + g(t + ei)), t ∈ Zν ,

corresponds to
p(±ei) = 1

2ν , i = 1, . . . , ν,

where ei ∈ Zν has 1 in the ith coordinate and 0’s elsewhere.
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Let {Sj , j = 0, 1, . . . } be a random walk on Zν with S0 = 0 and

p(s) = P(S1 = s), s ∈ Zν .

We introduce

Tg(t) =
∑
s∈Zν

p(s)g(s + t) = E[g(S1 + t)], t ∈ Zν .

Example 3

For θ ∈ (0, 1), fractional heat operator (I − T )d in dimension ν ≥ 2 with

Tg(t) = (1− θ)g(t− e1)

+ θ

2(ν − 1)

ν∑
i=2

(g(t− e1 − ei) + g(t− e1 + ei)), t ∈ Zν ,

corresponds to

p(−e1) = 1− θ, p(−e1 ± ei) = θ

2(ν − 1) , i = 2, . . . , ν − 1.
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Since pj(s) = P(Sj = s) satisfies

pj(s) =
∑
r∈Zν

p(r)pj−1(s− r), s ∈ Zν ,

we have
T jg(t) =

∑
s∈Zν

pj(s)g(s + t) = E[g(Sj + t)], t ∈ Zν ,

in

(I − T )dg(t) =
∞∑
j=0

ψj(d)T jg(t)

=
∑
s∈Zν

τ(s; d)g(s + t), t ∈ Zν .

where we then study fractional coefficients

τ(s; d) =
∞∑
j=0

ψj(d)pj(s), s ∈ Zν .
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Properties of binomial coefficients
Let d ∈ (−1, 1), d 6= 0.

Then by application of Stirling’s formula,

ψj(d) ∼ Γ(−d)−1j−d−1, j →∞.

If d > 0, then

ψj(d) < 0 for all j = 1, 2, . . . ,
∞∑
j=0

ψj(d) = 0.

If d < 0, then

ψj(d) > 0 for all j = 1, 2, . . . ,
∞∑
j=0

ψj(d) =∞.
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Lemma (P., Surgailis 2024+)

Let 0 < d < 1. Then 0 < τ(0; d) <∞ and −∞ < τ(s; d) ≤ 0, s 6= 0, and∑
u∈Zν

τ(s; d) = 0.

Let −1 < d < 0. Then 0 ≤ τ(s; d) ≤ ∞, s ∈ Zν , and∑
s∈Zν

τ(s; d) =∞.

Let 0 < |d| < 1 and τ(0;−|d|) <∞. Then (I − T )d(I − T )−d = I.
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Proposition (P., Surgailis 2024+)

Let {Sj , j = 0, 1, . . . } be irreducible, aperiodic, E[S1] = 0, Γ := E[S1S
>
1 ] and

E exp(c|S1|) <∞ for some c > 0. Then for −((ν/2) ∧ 1) < d < 1, d 6= 0, the fractional
coefficients are well-defined and satisfy

τ(s; d) = (C + o(1))〈s,Γ−1s〉−(ν/2)−d, |s| → ∞,

where C is an explicit finite constant.

Proof uses the local CLT for a random walk from Lawler, Limic 2012
Examples 2, 3 by similar arguments (see Koul, Mimoto, Surgailis 2016,
P., Surgailis 2017, Surgailis 2020 for ν = 2)
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Denote the characteristic function

p̂(x) = E exp{i〈x, S1〉}, x ∈ Rν .

Theorem (P., Surgailis 2024+)
For d ∈ (−1, 1),∫

[−π,π]ν
|1− p̂(x)|−2|d|dx <∞ ⇐⇒

∑
s∈Zν

τ(s;−|d|)2 <∞. (1)

Either of them implies that the Fourier transform

τ̂( · ;−|d|) = (1− p̂( · ))−|d| ∈ L2([−π, π]ν).

Moreover, for d ∈ (0, 1), the above conditions hold with d in place of −|d|.

Proof uses approximation with

τr(s; d) =
∞∑
j=0

rjψj(d)pj(s), s ∈ Zν , r ∈ (0, 1).
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3. Fractionally integrated random fields X on Zν

Corollary (P., Surgailis 2024+)
Let d ∈ (−1, 1), d 6= 0 and (1) hold. Let {ε(t), t ∈ Zν} be a white noise, i.e.

E[ε(t)] = 0, E[ε(t)ε(s)] = 1(t = s), t, s ∈ Zν .

Then
X(t) = (I − T )−dε(t), t ∈ Zν , (2)

is a stationary solution of the equation

(I − T )dX(t) = ε(t), t ∈ Zν ,

where the both series converges in mean square.
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Corollary (continued)
Denote

r(t) = Cov(X(0), X(t)) =
∑
s∈Zν

τ(s;−d)τ(s + t;−d), t ∈ Zν .

If d ∈ (0, 1), then X has r(t) ≥ 0 and long-range dependence:∑
t∈Zν

|r(t)| =∞.

If d ∈ (−1, 0), then X has negative dependence:∑
t∈Zν

r(t) = 0.

=⇒ Existence of the solution X in (2) for Examples 2, 3
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For d ∈ (−1/2, 1/2), d 6= 0, ARFIMA(0,d,0) process:

X(t) =
∞∑
j=1

ψj(d)X(t− j) + ε(t) =
∞∑
j=0

ψj(−d)ε(t− j) t ∈ Z.

The first series is the best linear predictor (or conditional expectation in the
Gaussian case) of X(t) given the ‘past’ X(s) since Cov(X(s), ε(t)) = 0, s < t

CAR random fields: Besag 1974, 1995 and references therein
CAR random fields with long-range dependence: Ferretti, Ippoliti, Valentini,
Bhansali 2023
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Corollary (P., Surgailis 2024+)
Let d ∈ (−1, 1), d 6= 0 and (1) holds. Then X given by (2) has a representation:

X(t) =
∑
s 6=0

b(s)X(t− s) + ζ(t), t ∈ Zν ,

where the series converges in mean square,
b(t) = −τ(−t; d)/τ(0; d) and ζ(t) = ε(t)/τ(0; d) such that

Cov(ζ(t), ζ(s)) = 0, t 6= s.

b(t) = −γ∗(t)/γ∗(0) with γ∗(t) = (2π)−ν
∫

Πν exp(−i〈t,x〉)|1− p̂(x)|2ddx and
ζ(t) = γ∗(0)−1 ∫

Πν exp(i〈t,x〉)(1− p̂(−x))dZ(dx), where Z(dx) is a
complex-valued random measure on Πν = [−π, π]ν with zero mean,
E|Z(dx)|2 = dx/(2π)ν satisfying ε(t) =

∫
Πν exp(i〈t,x〉)Z(dx), t ∈ Zν , such that

Cov(ζ(t), X(s)) = 0, t 6= s,

if d ∈ (0, 1).
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4. Scaling limits of X

For φ : Rν → R, consider the distribution of∫
Rν

X([t])φ(t/λ)dt as λ→∞,

where
X(t) =

∑
s∈Zν

a(t− s)ε(s), t ∈ Zν , (3)

with IID random variables ε(t), t ∈ Zν , E[ε(0)] = 0, E[|ε(0)|2] = 1 and a ∈ S(Zν).

For example,
φ(t) = 1(t ∈ [0, 1]ν)
a(t) = τ(−t;−d) in our Example 2
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Assumption A(d)
Let a ∈ S(Zν) satisfy:

if d 6= 0, then
a(t) = |t|2d−ν(`(t/|t|) + o(1)), |t| → ∞,

where ` 6= 0 is a continuous real-valued function on {t ∈ Rν : |t| = 1}, moreover,
if d < 0, then ∑

t∈Zν

a(t) = 0.

if d = 0, then ∑
t∈Zν

|a(t)| <∞,
∑
t∈Zν

a(t) 6= 0.

Note that X has long-range dependence if d > 0, negative dependence if d < 0 and
short-range dependence if d = 0.
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For φ : Rν → R, we define

W (φ) =



∫
Rν

(∫
Rν

a∞(t− s)φ(t)dt
)
W (ds), d > 0,∫

Rν

(∫
Rν

a∞(t− s)(φ(t)− φ(s))dt
)
W (ds), d < 0,

σ

∫
Rν

φ(s)W (ds), d = 0,

where W (ds) is a real-valued Gaussian random measure with mean zero and variance ds
and

a∞(t) = |t|2d−ν`(t/|t|), t 6= 0, d 6= 0,

σ2 =
(∑

t∈Zν

a(t)
)2

=
∑
t∈Zν

Cov(X(0), X(t)) <∞, d = 0.
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Proposition (P., Surgailis 2024+)

Let X be as in (3), where A(d) holds for |d| < ν/4. Then

λ−(ν+4d)/2
∫
Rν

X([t])φ(t/λ)dt
d→W (φ), φ ∈ L1(Rν) ∩ L∞(Rν),

where if d < 0 then φ in addition satisfies∫
Rν

(∫
Rν

(φ(t + s)− φ(s))2ds
)1/2
|t|2d−νdt <∞.

Proof uses as λ→∞ the asymptotics of

Var
(∫

Rν

X([t])φ(t/λ)dt
)

Lahiri, Robinson 2016 and references therein
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Properties by Dobrushin 1979
Let S(Rν) be the Schwartz space of φ : Rν → R. Then {W (φ), φ ∈ S(Rν)} is

stationary: if for all a ∈ Rν ,

W (φ) d= W (φ(·+ a)), φ ∈ S(Rν),

self-similar with index H = (ν − 4d)/2 ∈ (0, ν): if for all λ > 0,

W (φ) d= λH−νW (φ(·/λ)), φ ∈ S(Rν).
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Possible extensions:
anisotropic scaling
infinite variance
fractional integration on Rν or graph G

Thank you for your attention

23 / 23


