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1. Introduction

Denote all functions g : Z — R by S(Z) and consider operators from S(Z) to S(Z):

@ backshift
Tg(t)=g(t—1)
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1. Introduction

Denote all functions g : Z — R by S(Z) and consider operators from S(Z) to S(Z):

@ backshift
Tg(t)=g(t—1)

@ its jth power _
T7g(t) = g(t — j)
with T° = I identity, T* =T

@ its polynomial, e.g., discrete derivative

(I=T)g(t) =g(t) —g(t—1)

N)
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For d € (—1,1), d # 0, the fractional operator is defined by

(L =1)'9(t) =3 v, (@ Tg(t) |= 3 s ()g(t - )
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For d € (—1,1), d # 0, the fractional operator is defined by

(I=T)'g(t) = (T g(t) |= Y ¥;(d)g(t - j)
j=0 j=0
through binomial expansion
(1—2)* ij V2l zeC, |z <1,

where

vyd) = —LU =4 11 izl=d 09,

I'(j+ 1)I'(—d) i

0<i<j
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Let d € (—1/2,1/2), d # 0 and {e(t), t € Z} be a white noise, i.e. a sequence of
random variables such that

Ele(t)] =0, Ele(t)e(s))=1(t=3s), t,s€Z.

Then
X(t)= I -T) "), teZ,
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Let d € (—1/2,1/2), d # 0 and {e(t), t € Z} be a white noise, i.e. a sequence of
random variables such that

Ele(t)] =0, Ele(t)e(s))=1(t=3s), t,s€Z.

Then
X(t)= I -T) "), teZ,

is an ARFIMA(O0, d, 0) process, i.e. a stationary solution of the equation

(I -T)'X(t) =¢(t), teZ.

@ Granger, Joyeux 1980, Hosking 1981
@ Convergence of series of random variables in mean square

@ Long-range/negative dependence
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Problem
Extend fractional operators

oo

(I=T)" = 4;(d)T?, de(=1,1), d#£0,

j=0

to more general T : S(Z") — S(Z") for v > 1.
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2. Fractional integration on Z”

Let {S;, 7 =0,1,...} be a random walk on Z" with Sy = 0 and

p(s) =P(S1 =s), seZ".
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2. Fractional integration on Z”

Let {S;, 7 =0,1,...} be a random walk on Z" with Sy = 0 and

p(s) =P(S1 =s), seZ.

We introduce

Ty(t) = Z p(s)g(s+1t) | =E[g(S1 +t)], tez”.

seZL”

Example 1
(I —T)% in dimension v = 1 in ARFIMA(0, d,0) with
Tg(t)=g(t-1), tez,

corresponds to
p(-1) =1
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Let {S;, 7 =0,1,...} be a random walk on Z" with Sy = 0 and
p(s) =P(S1=15s), se€Z".

We introduce

Example 2
Fractional Laplacian (I —T)? in dimension v > 1 with

v

1

Ty(t) = 5 D (gt —e) +glt+e), tez’,

=1
corresponds to

p(:l:ei):%, i=1,...,v,

where e; € Z” has 1 in the ith coordinate and 0's elsewhere.

Tg(t)= > p(s)g(s +1t) |=Elg(Si +t)], teZ".
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Let {S;, 7 =0,1,...} be a random walk on Z" with Sy = 0 and
p(s) =P(S1=3s), se€Z".

We introduce

Tg(t) =Y p(s)g(s+1t) |=Elg(S1+1)], teZ’.

sELY

Example 3
For 6 € (0, 1), fractional heat operator (I — 7)) in dimension v > 2 with
Tg(t) = (1—0)g(t —e)

0
2(v—1)

v

D (gt —er—e)+gt—ei+e)), tez”,

=2

_|_

corresponds to

p(—e1)=1-0, p(—ei+e;)=

2(v—1)’




Since p;(s) =P(S; = s) satisfies

pi(s) = Z p(r)pj-1(s —r), seZ”

reLy
we have
=) pi(s)g(s+t) =E[g(S; +1)], tez’,
sezv
in
oo
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Since p;(s) =P(S; = s) satisfies
pi(s) =Y pr)pj-i(s—r), sz’
reLy

we have
=) pi(s)g(s+t) =E[g(S; +1)], tez’,

sE€Z¥

(I=T)'gt) =D s T'gt) = Y r(sid)g(s +1t), teZ’.
j=0

sELY

where we then study fractional coefficients

oo
7(s;d) ZUJ Dp;(s), s€Z”.

Jj=0
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Properties of binomial coefficients
Let d € (—1,1),d #0.
@ Then by application of Stirling’s formula,
i(d) ~T(=d) 57— o,

@ If d >0, then

¥;(d) <0 forall j=1,2,..., ij(d):o.
j=0
@ If d <0, then
Yi(d) >0 forallj=1,2,..., > w(d)=oc.
=0
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Lemma (P., Surgailis 2024+)
@ Let 0<d < 1. Then 0 < 7(0;d) < co and —oo < 7(s;d) <0, s # 0, and

Z 7(s;d) =0.

uezy

@ Let -1 <d<0. Then 0 < 7(s;d) < o0, s € Z", and

Z 7(8;d) = o0.

ElsvAd

@ Let 0 < |d| <1 and 7(0; —|d|) < co. Then (I - T)Y(I -T) *=1.
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Proposition (P., Surgailis 2024+)

Let {S;, 7 =0,1,...} be irreducible, aperiodic, E[S1] = 0, I' := E[S1 S]] and

E exp(c|Si]) < oo for some ¢ > 0. Then for —((v/2) A1) < d < 1, d # 0, the fractional

coefficients are well-defined and satisfy
7(s;d) = (C +o(1)) (s, 's) /P74 5] = o0,

where C is an explicit finite constant.
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Proposition (P., Surgailis 2024+)

Let {S;, 7 =0,1,...} be irreducible, aperiodic, E[S1] = 0, I' := E[S1 S]] and
E exp(c|Si]) < oo for some ¢ > 0. Then for —((v/2) A1) < d < 1, d # 0, the fractional
coefficients are well-defined and satisfy

7(s;d) = (C + o(1))(s, T 1)~ /2 =4, |s] — oo,

where C is an explicit finite constant.

@ Proof uses the local CLT for a random walk from Lawler, Limic 2012
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Proposition (P., Surgailis 2024+)

Let {S;, 7 =0,1,...} be irreducible, aperiodic, E[S1] = 0, I' := E[S1 S]] and

E exp(c|Si]) < oo for some ¢ > 0. Then for —((v/2) A1) < d < 1, d # 0, the fractional

coefficients are well-defined and satisfy
7(s;d) = (C +o(1)) (s, 's) /P74 5] = o0,

where C is an explicit finite constant.

@ Proof uses the local CLT for a random walk from Lawler, Limic 2012

@ Examples 2, 3 by similar arguments (see Koul, Mimoto, Surgailis 2016,
P., Surgailis 2017, Surgailis 2020 for v = 2)
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Denote the characteristic function

p(x) = Eexp{i(zx, S1)}, =z €R”.

Theorem (P., Surgailis 2024+)
Ford e (—1,1),

/ 1= p(@)| *Mde < 00 = > 7(s;—[d])* < 0. (1)
[=m,m]” sSELY
Either of them implies that the Fourier transform

7(-3=ld) = (1 =p(- ) € L*([=m,7]").

Moreover, for d € (0,1), the above conditions hold with d in place of —|d|.

Proof uses approximation with

To(sid) = > rui(d)ps(s), s€Z’, re(01).

Jj=0
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3. Fractionally integrated random fields X on Z"

Corollary (P., Surgailis 2024+)
Let d € (—1,1), d # 0 and (1) hold. Let {e(t), t € Z"} be a white noise, i.e.
Ele(t)] =0, Ele(t)e(s)]=1(t=3s), t,se€Z”.

Then
X(t)=I-T)""%@t), teZ, ()

is a stationary solution of the equation

(I -T)'X(t) =e(t), teZ,

where the both series converges in mean square.
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Corollary (continued)

Denote
r(t) = Cov(X(0), X (¢)) = Z T(s;—d)T(s +t;—d), teZ".
SEZLY

@ If d € (0,1), then X has r(t) > 0 and long-range dependence:
> (@) = oo
tezv

@ If d € (—1,0), then X has negative dependence:

Z r(t) = 0.

tezy

= Existence of the solution X in (2) for Examples 2, 3
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For d € (—1/2,1/2), d # 0, ARFIMA(0,d,0) process:

X(t) = wy(d)X(t— ) +et) Z% e(t—j) teL

j=1

@ The first series is the best linear predictor (or conditional expectation in the
Gaussian case) of X (t) given the ‘past’ X (s) since Cov(X(s),e(t)) =0, s <t

@ CAR random fields: Besag 1974, 1995 and references therein

@ CAR random fields with long-range dependence: Ferretti, Ippoliti, Valentini,
Bhansali 2023

16
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Corollary (P., Surgailis 2024+)
Let d € (—1,1), d # 0 and (1) holds. Then X given by (2) has a representation:
X(t)=> b(s)X(t—s)+((t), tez’,
s#0

where the series converges in mean square,

@ b(t) = —7(—t;d)/7(0;d) and ((t) = e(t)/7(0;d) such that
Cov(((t),C(s)) =0, t#s.

® b(t) = —"(£)/7(0) with v*(£) = (2m)~" [,., exp(—i(t, ®))|1 — p(x)|*dz and
¢(t) =~(0)! fnv exp(i(t, ) (1 — p(—x))?Z(dz), where Z(dx) is a
complex-valued random measure on II” = [—m, 71]” with zero mean,
E|Z(dz)|? = dx/(27)" satisfying e(t) = fHV exp(i(t, x))Z(dz), t € Z", such that

Cov(C(8), X(s) =0, t+#s,

if d € (0,1).
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4. Scaling limits of X

For ¢ : R — R, consider the distribution of

/X o(t/N)dt as A — oo,

where
X(t)=> at—s)e(s), tez’, (3)

SEZY
with 11D random variables £(t), t € Z”, E[¢(0)] = 0, E[|e(0)|*] = 1 and a € S(Z").

For example,
@ ¢(t) =1(t € [0,1])
@ a(t) = 7(—t; —d) in our Example 2
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Assumption A(d)
Let a € S(Z") satisfy:
@ if d# 0, then
a(t) = [t~ (0(t/[8]) +o(1)), [t] = oo,

where £ # 0 is a continuous real-valued function on {t € R” : |t| = 1}, moreover,

if d <0, then
> aft)=o.
tezv
@ if d =0, then
> _la(t) <o, Y alt)#0.
tezZv teZv

Note that X has long-range dependence if d > 0, negative dependence if d < 0 and
short-range dependence if d = 0.



For ¢ : R” — R, we define

/ (t—s)o )W(ds), d>0,
f f ot — 8) qﬁ(s))dt) W(ds), d<0,
o(s)W d=0,

R"

where W (ds) is a real-valued Gaussian random measure with mean zero and variance ds
and

aco(t) = |“2Ulﬂ/€(t/|t|)7 t+#0, d+0,
e ( Z a(t))2 = Z Cov(X(0), X (t)) < oo, d=0.
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Proposition (P., Surgailis 2024+)

Let X be as in (3), where A(d) holds for |d| < v/4. Then
(“+4d>/2/ X([E)(t/N)dt S W(e), ¢e L'R”)NL=(RY),

where if d < 0 then ¢ in addition satisfies

/RV (/ (Pt +s) — ¢(s))2ds>1/2|t\2d*”dt < oo.

@ Proof uses as A — oo the asymptotics of

Var ( X([t])qs(t/A)dt)

RV

@ Lahiri, Robinson 2016 and references therein
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Properties by Dobrushin 1979
Let S(R”) be the Schwartz space of ¢ : R” — R. Then {W(¢), ¢ € S(R")} is
@ stationary: if for all @ € R”,

W(@) £ W(e( +a). ¢cSER),
@ self-similar with index H = (v — 4d)/2 € (0,v): if for all A > 0,

W($) < AT W((-/N), ¢ € S(RY).
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Possible extensions:
@ anisotropic scaling
@ infinite variance

@ fractional integration on R” or graph G

Thank you for your attention
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