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ON A GENERAL KAC-RICE FORMULA FOR THE MEASURE OF A LEVEL SETGeoStoc24-Tours



Outline
Introduction

Weak Bulinskaya condition
D = d
D > d

Introduction

Weak Bulinskaya condition

D = d

D > d
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Introduction
The history of the Kac-Rice formula dates back to 1943. Two
seminal articles established it for the first time.

I M. Kac. On the average number of real roots of a random
algebraic equation.Bull. Amer. Math. Soc.49(1943), 314–320.

I Rice, S. O. Mathematical analysis of random noise.Bell
System Tech. J.24(1945), 46–156.
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Despite the gap between the two publications, several
generalizations are explored in the Rice article, as is evident in
Kac’s own review.

Figure:
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Both results are based on the variable change formula known as
the Area Formula. Which is expressed in this case as follows. Let
X be a random process with trajectories in C1(R), if f is a a.s.
continuous function, then∫

R
f (u)NX

[a,b](u)du =

∫ b

a
f (X (s))|X ′(s)|ds,

where
NX
A (u) = #{s ∈ A : X (s) = u}.
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Giving rise to the Kac counter.

NX
[a,b](u) = lim

δ→0

1

2δ

∫ b

a
1[u−δ,u+δ](X (s))|X ′(s)|ds a.s.

and by Fatou’s lemma, and denoting pX (s),X ′(s)(x , x
′) the density

function of the vector (X (s)),X ′(s)), we have

E[NX
[a,b](u)] ≤

∫ b

a
[

∫
R
|x ′|pX (s),X ′(s)(x , x

′)dx ′]ds.
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Under Bulinskaya condition

P{∃t ∈ U, X (t) = u, X ′(t) = 0} = 0,

the reverse inequality is also true and so the Kac-Rice formula
arises

E[NX
[a,b](u)] =

∫ b

a
[

∫
R
|x ′|pX (s),X ′(s)(x , x

′)dx ′]ds.

Our conference is mainly concerned with the multidimensional
extension of this famous formula.
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The area formula has two multidimensional generalizations. Its
discovery and popularization are the work of Federer’s monumental
book “Geometric measure theory”.

I Area formula f : RD → R continuous a.s. and if B ⊂ T is a
relatively compact open set and X : T ⊂ RD → RD and
X ∈ C1(T ) then∫

RD

f (u)NX
T (u)du =

∫
T
f (X (s))| detX ′(s)|ds.
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I The Coarea formula: f : Rd → R continuous a.s.
X : T ⊂ RD → Rd with D > d∫

Rd

f (u)σD−d(Lu(B))du =

∫
B
f (X (s))∆(s)ds.

Here ∆(s) = (det(X ′(s)(X ′(s))T ))
1
2 , σD−d is the

D − d-dimensional Hausdorff measure on RD and

Lu(B) = {t ∈ B : X (t) = u},

is the level set.
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Our main concerns is the regularity of this level set for C1 random
fields. Under further smoothness conditions on the paths of X the
Morse-Sard type arguments and implicit function theorem imply
that for a.s. level u ∈ Rd the level set is a D − d manifold then in
the coarea formula we can replace the Hausdorff measure a by the
Lebesgue measure.
But in applications we need a Kac-Rice formula for all u.
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If we assume C1 regularity and the strong Bulinskaya theorem

P{∃t ∈ U, X (t) = u, ∆(t) = 0} = 0,

the set Lu is a.s. a manifold.
Satisfying this type of condition needs to demand increasing
smoothness of the X -paths as the dimension D increases.

Our contribution is to introduce instead the weak Bulinskaya
condition

σD−d({t ∈ T : X (t) = u, ∆(t) = 0}) = 0.

Note that σ0 coincides with the counting measure. Then if D = d
the two conditions are the same.
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We have the following key proposition
Proposition 1. Let T ⊂ RD be an open set and let X : T → Rd

be a C 1 random field. Let u ∈ Rd . Assume that the density pX (t)

of X (t) satisfies

pX (t)(v) ≤ C for all t ∈ T and v in some neighbourhood Vu of u.
(1)

Then

σD−d ({t ∈ T : X (t) = u, ∆(t) = 0}) = 0, a.s..
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Some comments are in order:

1. The proof of this proposition, uses local time and extends
existing results considerably. (Adler-Taylor [2, Lemma
11.2.11] and Azäıs-Wschebor [7, Proposition 1.20, Proposition
6.11], [26, Lemma 6].)

2. When D > d , since the regular part of the level set is a C1

manifold of dimension D − d , it implies that the level set is
a.s. an (D − d)-rectifiable set. In particular its
(D − d)-dimensional Hausdorff measure coincides with the
associated geometric measure of the regular part of Lu, i.e.
the Riemaniann measure induced by the inherited Riemannian
structure from RD .
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We will give some ideas about the proof. Let us begin with the
Kac-Rice formula for a.s. u for every Borel set B ⊂ T , we have

E(σD−d(Lu(B))) =

∫
B

E
(
∆(t)|X (t) = u

)
pX (t)(u) dt (2)

for almost every u ∈ Rd . The proof is easy
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Let g : Rd → R be a test function, a bounded Borel non-negative
function. By the co-area formula one gets∫

Rd

g(u)σD−d
(
X−1(u) ∩ B

)
du =

∫
B
g(X (t)) |∆(t)| dt.

Take expectations on both sides. E
(
|∆(t)|/X (t) = u

)
is well

defined for almost every u.
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Applying Fubini’s theorem and conditioning by X (t) = u, we get∫
R
g(u)E

(
σD−d(Lu(B))

)
du

=

∫
R
g(u)du

∫
B
E
(
|∆(t)||X (t) = u

)
pX (t)(u)dt.

By duality, since g(·) is arbitrary, the terms in factor of g(u) on
both sides are equal for almost every u, giving the result.
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The Hausdorff measure.
For a given K ⊂ RD , recall that σ`(K ) is the `-dimensional
Hausdorff measure given by σ`(K ) = limε→0 σ

ε
` (K ), where σε` is

the `-dimensional Hausdorff pre-measure on RD given by

σε` (K ) := α` inf{
∑
i

ρi
`, for a covering {BD(xi , ρi )} of K , ρi < ε},

where α` := λ`(B`(0, 1)) is the Lebesgue measure of the unit ball
in R`. We need a technical lemma.
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Lema
Let K be a compact set of RD , and assume d < D. Suppose
σD−d(K ) is finite. Then there exist constants C1 and C2,
depending on d and D, such that, for ε sufficiently small:

I There exists an “ε-packing” (a collection of disjoint balls with
center belonging to K and with radius ε) with cardinality l(ε),

l(ε) ≥ C1ε
d−DσD−d(K ).

I The parallel set K+ε =
⋃

x∈K BD(x , ε) satisfies

σD(K+ε) ≥ C2ε
dσD−d(K ).
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Proof of the proposition.
We assume that u = 0 and that the considered set T is compact.
Define the density of the occupation measure LT, the local time, as

LT := lim inf
δ→0

LT(δ)

:= lim inf
δ→0

1

λd(Bd(0, δ))
σD ({t ∈ T : ‖X (t)‖ ≤ δ}) ,

where λd(Bd(0, δ)) = αd δ
d is the volume of the ball Bd(0, δ) with

radius δ on Rd . The definition of the local time is in a generalized
sense. Fubini and the hypothesis for the density implies

E[LT] ≤ CσD(T ),

thus LT is a random variable finite a.s.
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Let M := maxt∈T λmax(X ′(t)), where λmax is the greatest singular
value. Let

N(ε) := sup
t∈T ; ‖v‖<ε

‖X (t + v)− X (t)− X ′(t)v‖
‖v‖

.

Then, by compactness, N(ε) and M are almost surely finite
non-negative random variables and N(ε)→ 0, as ε→ 0.
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Let L̃0 the irregular part of the level set L0, i.e.,

L̃0 := {t ∈ T : X (t) = 0, ∆(t) = 0}.

Let t ∈ L̃0, then X (t) = 0, rk(X ′(t)) = k for some
k ∈ {0, 1, . . . , d − 1}.
Let v1 ∈ V1 := ker(X ′(t)), where V1 has dimension D − k .
Let v2 ∈ V2 := V⊥1 , where V2 has dimension k .
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Thus

‖X (t + v1 + v2)‖ ≤ ‖X (t + v1 + v2)− X (t + v1)‖+ ‖X (t + v1)‖
≤ M‖v2‖+ ‖v1‖ · N(‖v1‖).

Suppose ε is such that N(ε) < 1, choose v1 and v2 such that

‖v1‖ ≤
1√
2
ε, ‖v2‖ ≤

1√
2
ε · N(ε). (3)

Then we have∥∥∥∥X (t +

(
v1
v2

))∥∥∥∥ ≤ 1√
2

(M + 1)ε · N(ε).
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The conditions given on v1 and v2 defines a polydisk with volume

const εD−k
(
ε · N(ε))k ,

where the constant depends on D, d , and k . The polydisk is
included in L+ε0 and thus in T for sufficiently small ε.
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Let us define the event ZD,d = {ω : σD−d(L̃0) > 0}, and assume
by contradiction that P(ZD,d) > 0.
In the case D = d , given ω ∈ Zd ,d , let
δ = δω,ε =

(
(M + 1)ε · N(ε)

)
. Then the approximated local time

LT(δ) is greater than

1

(ε · N(ε))d
(const) εd−k

(
ε · N(ε))k = (const) (N(ε))k−d ,

which tends to infinity as ε→ 0, giving the contradiction.
The proof for D > d is similar.
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Theorem 1:[Rice formula for the expectation] Let X : T → Rd be a
random field, T an open subset of RD , (D ≥ d).
Assume that:

(i) The sample paths of X (·) are a.s. C 1,

(ii) for each t ∈ T , X (t) admits a continuous density pX (t)(v), which is

bounded uniformly in v ∈ Rd and t in any compact subset of T .

(iii) For every v ∈ Rd , for every t ∈ T , the distribution of
{X (s), s ∈ T} conditional to X (t) = v is well defined as a
probability and is continuous, as a function of v , with respect to the
C 1 topology.

Then, for every Borel set B contained in T and for every level u, one has

E (σD−d (Lu(B))) =

∫
B

E (∆(t)|X (t) = u) pX (t)(u)dt. (4)
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The previous theorem implies the following result for the Gaussian
case. The most important aspect is that there are almost no
conditions.
Theorem 2: Let X : T → Rd be a Gaussian random field, T an
open subset of RD , (D ≥ d), and u ∈ Rd , satisfying the following:

(i) The sample paths of X (·) are a.s. C 1;

(ii) for each t ∈ T , X (t) has a positive definite
variance-covariance matrix.

Then, (4) holds true. In addition, if B is compact, both sides of
(4) are finite and, consequently, the measure
B 7→ E (σD−d (Lu(B))) is Radon.
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It is impossible in such a short time to give a complete proof of the
two previous theorems. We will settle for a few tips to show where
the innovation lies.

I First of all, we must say that the Gaussian case is derived
from the general one by defining conditional distributions by
means of regression formulas.

I With respect to the conditions of Theorem 1. We must say
that the introduction of the C 1 topology allows us to obtain
much generality and we get the idea from a recent result of
Angst and Poly for dimension one.
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I The following result, when D = d , allows us to approximate
the number of roots of the field X (·)− u that we denote by
Nu(X ,T ). If Xn → X in the C 1(T ,Rd) topology and there
are not roots on the boundary of T and the Bulinskaya
condition holds. Then Nu(Xn,T )→ N(X ,T ) a.s.
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We turn now to the main result whenever D = d . Mainly, three
problems may arise:

1. The roots X (t) = u can be associated with a Jacobian X ′(t),
which is almost singular or even singular, namely, ∆(t) = 0.

2. There can be some roots on the boundary of the considered
set.

3. The quantities considered may be too large, causing
non-integrability.
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All these problems are overcome by a bounding and tapering
argument followed by a monotone convergence argument. The
tapering is here necessary to keep the continuity, which is a key
argument. Moreover, convergence in the topology of C 1 allows the
approximation by crossings of processes that satisfy the conditions
that avoid the problems pointed out before.
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Proof D > d :
In this case our proof method is different from the usual one. The
method will allow us to eliminate the need to demand a high
regularity for X when D is large. Let us to point outs that the
weak Bulinskaya condition implies that the level set is the union of
the regular points ∆(t) 6= 0 with the set of irregular points
∆(t) = 0. That is, the union of a manifold with a set of zero
measure. In other words, the set is rectifiable. Our fudamnetal tool
is Crofton’s formula.
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Suppose that we are in the Euclidean space RD . Given ` < D, we
consider the Grassmannian manifold GD,` of `-dimensional
subspaces of RD . Let dGD,` be the Haar measure on this space.
Let B be a Borel set in RD . We define the m-integral geometric
measure of B by

ID,m(B)

:= cD,m

∫
V∈GD;D−m

dGD,D−m(V )

∫
y∈V⊥

dλm(y) # {B ∩ `V ,y} ,

where `V ,y is the affine linear space {y + V }, and where we
naturally identify the element of the grassmanian V ∈ GD,D−m
with the associated subspace of codimension m on RD .
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An important property of working with this formula is that, if B is
a rectifiable set we have

σd(B) = ID,m(B).

A simple way to characterise m-rectifiable sets is to describe then
as the union of countably many C 1 manifolds and a set of σm
measure zero. This fact makes possible to apply this formula for
obtaining the Kac-Rice formula by using our weak Bulinskays’s
condition.
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By Fubini’s theorem

E (σD−d(Lu(B)))

= cD,D−d

∫
V∈GD,d

dGD,d

∫
y∈V⊥

dλD−d(y)E# {B ∩ `V ,y} ,

where
E# {B ∩ `V ,y} = E

(
Nu

(
X ,B ∩ (V + y)

))
.
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Applying the Kac-Rice formula, for D = d , and again Fubini’s
theorem:

E (σD−d(Lu(B)))

= cD,D−d

∫
V∈GD,d

dGD,d(V )

∫
B
E
(
| det(X ′(t))(πV )>|/X (t) = u

)
× pX (t)(u)dt,

After a new inversion of integral we get the result identity

cD,D−d

∫
V∈G(D,d)

| det(X ′(t)(πV )>)|dGD,d(V ) = ∆(t),
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Weak Bulinskaya condition
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D > d

elle vit apparâıtre le matin et se tut discrètement...
Thank you.
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