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Motivations: inverse problems

Image deblurring
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Motivations

y = A(x) + n

▶ solve complex ill-posed ML or inverse problems

▶ big data in high dimensions

▶ good performances

▶ fast inference algorithms

▶ credibility intervals

with maybe some additional options such as:

▶ privacy preserving

▶ distributed computing

Bayesian approach + Monte Carlo method
+ machine learning?
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The usual toolbox of inference

▶ Optimization:
problem ⇒ loss function

efficient algorithms

theoretical guarantees

interpretability / functional analysis

▶ Bayesian approaches:
probabilitic models

uncertainty quantification

▶ Machine learning (deep):

adaptive ⇒ relevant

outstanding performance

toward the best of all worlds?
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PnP-SGS for inverse problems
State of the art performance + credibility intervals

obs. truth MMSE 90% CI

G. blur

SupRes

motion
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Bayesian inference

y: available data = observations
x: unknown object of interest

Prior × Likelihood −→ Posterior

x ∼ π(x) y|x ∼ π(y|x) x|y ∼ π(x|y)
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Bayesian inference

y: available data = observations

x: unknown object of interest

Bayesian estimators argmin
x̂

∫
L(x, x̂)π(x|y)dx
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Bayesian inference

y: available data = observations

x: unknown object of interest

Credibility regions Cα
∫

Cα
π(x|y)dx = 1− α
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Bayesian inference

y: available data = observations

x: unknown object of interest

Image to restore y
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Bayesian inference

y: available data = observations

x: unknown object of interest

Restored image x̂
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Bayesian inference

y: available data = observations

x: unknown object of interest

Confidence intervals ∆x̂
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Illustration: 2D Gaussian mixture model - MTM steps
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Illustration: 2D Gaussian mixture model - MALA + MTM
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Bayesian approach for imaging inverse problems
Linear Gaussian inverse problems

y = Ax+ n

A = damaging operator (blur, binary mask...)

n ∼ N
(
0d , σ

2Id
)
= noise.

Posterior distribution p (x|y) ∝ exp

[
− 1

2σ2
∥y − Ax∥22 − λg(x)

]

where g(x) = prior knowledge on solutions.

Direct sampling of images is challenging

1 generally high dimension of the image, e.g. 1 million pixels,

2 generality of the prior distribution of probability, cf. g(x)
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Motivations The multifractal framework Infinitely divisible cascades Connections to existing models Conclusion

Natural images as stochastic processes

Conjecture by D. Mumford & B. Gidas :

There exists simply described stochastic models for images :

1 which assign high likelihood to any ’natural’ image of the
world we live in,

2 whose random samples have the ’look and feel’ of natural
images, i.e. make you look twice to see if you recognize
something in them.

ICIP’05 Pierre Chainais
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Motivations The multifractal framework Infinitely divisible cascades Connections to existing models Conclusion

Our purpose

Two main properties :

non Gaussian scale invariant: S(k) ⇠ 1/k2�⌘
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[Field’87, Ruderman’94, Grenander & Srivastava’01...]

How to build stochastic image processes
with non Gaussian statistics and a scale invariant behavior ?

with some desirable properties like homogeneity, isotropy...

ICIP’05 Pierre Chainais
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Motivations The multifractal framework Infinitely divisible cascades Connections to existing models Conclusion

Examples

inserting an inhomogeneity

ICIP’05 Pierre Chainais
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Motivations The multifractal framework Infinitely divisible cascades Connections to existing models Conclusion

Physical interpretation

Several models use a distribution of
elementary objects like the
transported generator model by
Grenander & Srivastava’01 or
the model by Chi’98.
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Histograms of x−derivatives of images by, 2D model.  Number’of images:40

solid line: original images

dashed line: scaled down by 2

dashdot line: scaled down by 4

Figure 7.8: Logarithms of the marginal distributions of ∇xI, i = 1 (solid), i = 2 (dashed),
and i = 3 (dash-dotted)
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Figure 7.9: A sample scene.
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Compound Poisson Cascades can be interpreted as the superposition
of transparent objects of random sizes:

log Q`(x) =
X

(xi ,ri )2C`(x)

log Wi| {z }
transparency

· f

✓
x � xi

ri

◆

| {z }
object of size ri

+ K

distribution of sizes / 1
r3

positions = Poisson point process (xi , ri )

[Matheron’68, Grenander’99, Huang & Mumford’99, Gousseau’01]...

ICIP’05 Pierre Chainais
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Capitalizing on machine learning
Expressivity of deep neural networks

▶ Deep learning
strong expressivity
very efficient for supervised learning
large data set needed
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Forward SDE (data   noise) 

Reverse SDE (noise  data) 

score function

Figure 1: Solving a reverse-
time SDE yields a score-based
generative model. Transform-
ing data to a simple noise dis-
tribution can be accomplished
with a continuous-time SDE.
This SDE can be reversed if we
know the score of the distribu-
tion at each intermediate time
step, rx log ptpxq.

et al., 2020). To enable new sampling methods and further extend the capabilities of score-based
generative models, we propose a unified framework that generalizes previous approaches through the
lens of stochastic differential equations (SDEs).

Specifically, instead of perturbing data with a finite number of noise distributions, we consider a
continuum of distributions that evolve over time according to a diffusion process. This process
progressively diffuses a data point into random noise, and is given by a prescribed SDE that does not
depend on the data and has no trainable parameters. By reversing this process, we can smoothly mold
random noise into data for sample generation. Crucially, this reverse process satisfies a reverse-time
SDE (Anderson, 1982), which can be derived from the forward SDE given the score of the marginal
probability densities as a function of time. We can therefore approximate the reverse-time SDE by
training a time-dependent neural network to estimate the scores, and then produce samples using
numerical SDE solvers. Our key idea is summarized in Fig. 1.

Our proposed framework has several theoretical and practical contributions:

Flexible sampling and likelihood computation: We can employ any general-purpose SDE solver
to integrate the reverse-time SDE for sampling. In addition, we propose two special methods not
viable for general SDEs: (i) Predictor-Corrector (PC) samplers that combine numerical SDE solvers
with score-based MCMC approaches, such as Langevin MCMC (Parisi, 1981) and HMC (Neal et al.,
2011); and (ii) deterministic samplers based on the probability flow ordinary differential equation
(ODE). The former unifies and improves over existing sampling methods for score-based models.
The latter allows for fast adaptive sampling via black-box ODE solvers, flexible data manipulation
via latent codes, a uniquely identifiable encoding, and notably, exact likelihood computation.

Controllable generation: We can modulate the generation process by conditioning on information
not available during training, because the conditional reverse-time SDE can be efficiently estimated
from unconditional scores. This enables applications such as class-conditional generation, image
inpainting, colorization and other inverse problems, all achievable using a single unconditional
score-based model without re-training.

Unified framework: Our framework provides a unified way to explore and tune various SDEs for
improving score-based generative models. The methods of SMLD and DDPM can be amalgamated
into our framework as discretizations of two separate SDEs. Although DDPM (Ho et al., 2020) was
recently reported to achieve higher sample quality than SMLD (Song & Ermon, 2019; 2020), we show
that with better architectures and new sampling algorithms allowed by our framework, the latter can
catch up—it achieves new state-of-the-art Inception score (9.89) and FID score (2.20) on CIFAR-10,
as well as high-fidelity generation of 1024 ˆ 1024 images for the first time from a score-based model.
In addition, we propose a new SDE under our framework that achieves a likelihood value of 2.99
bits/dim on uniformly dequantized CIFAR-10 images, setting a new record on this task.

2 BACKGROUND

2.1 DENOISING SCORE MATCHING WITH LANGEVIN DYNAMICS (SMLD)

Let p�px̃ | xq :“ N px̃;x, �2Iq be a perturbation kernel, and p�px̃q :“ ≥
pdatapxqp�px̃ | xqdx, where

pdatapxq denotes the data distribution. Consider a sequence of positive noise scales �min “ �1 †
�2 † ¨ ¨ ¨ † �N “ �max. Typically, �min is small enough such that p�min pxq « pdatapxq, and �max is

2
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Capitalizing on machine learning
Expressivity of deep neural networks

▶ Deep learning
strong expressivity
very efficient for supervised learning
large data set needed

GO TO ANIMATION
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Sampling using normalizing flows (deep learning)
F. Cœurdoux’s PhD, N. Dobigeon - IRIT

(Deep) Learning changes of variables (optimal transport)

▶ MALAFlow: sampling in the Gaussian latent space

Coeurdoux et al. (2023) preprint
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Split Gibbs sampling (SGS) for inverse problems
Linear Gaussian inverse problems

y = Ax+ n

A = damaging operator (blur, binary mask...)

n ∼ N
(
0d , σ

2Id
)
= noise.

Posterior distribution p (x|y) ∝ exp

[
− 1

2σ2
∥y − Ax∥22 − λg(x)

]

where g(x) = prior knowledge on solutions.

Direct sampling of images is challenging

1 generally high dimension of the image, e.g. 1 million pixels,

2 generality of the prior distribution of probability, cf. g(x)
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Split Gibbs sampling (SGS)

Posterior distrib. p (x|y) ∝ exp


−

1

2σ2
∥y − Ax∥22

︸ ︷︷ ︸
f1(x)

−λg(x)︸ ︷︷ ︸
f2(x)




p(x|y) ∝ exp [−f1(x)− f2(x)]

⇓
π(x, z|x = z) ∝ exp [−f1(x)− f2(z)] such that x = z

⇓

πρ(x, z) ∝ exp

[
−f1(x)− f2(z)−

1

2ρ2
∥x− z∥22

]

Vono et al. (2019a)



19/37

Split Gibbs sampling (SP): conditional distributions

Full conditional distributions under the split distribution πρ:

πρ(x|z) ∝ exp

(
−f1(x)−

1

2ρ2
∥x− z∥22

)

πρ(z|x) ∝ exp

(
−f2(z)−

1

2ρ2
∥x− z∥22

)

Note that f1 and f2 are now split in 2 distinct distributions

”easy to use” thanks to state of the art sampling methods

Vono et al. (2019a)
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Split Gibbs sampling (SP): linear inverse problems

y = Hx+ n

where

▶ H = forward operator

▶ n = noise with covariance Ω−1

Likelihood:

p(y | x) ∝ exp


−

1

2
(Hx− y)TΩ(Hx− y)

︸ ︷︷ ︸
f1(x)



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Splitted Gibbs sampling (SP): linear inverse problems

Full conditional distributions under the split distribution πρ:





πρ(x|z) ∝ exp
[
− f1(x)︸︷︷︸

quadratic

− 1

2ρ2
∥x− z∥22

]

πρ(z|x) ∝ exp
[
− f2(z)︸︷︷︸

prior

− 1

2ρ2
∥x− z∥22

]

Important notice: πρ(z|x) is the posterior of a denoiser !
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Splitted Gibbs sampling (SP): linear inverse problems

Full conditional distributions under the split distribution πρ:





πρ(x|z) ∝ N
(
x;µx,Q

−1
x

)

πρ(z|x) ∝ DDPM(t∗n , z|x)

Likelihood = Gaussian distribution





Qx = HTΩH+
1

ρ2
IN

µx = Q−1
x

(
HTΩy +

1

ρ2
z

)

DDPM = Denoising Diffusion Probabilistic Model
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Plug-and-Play and splitting: PnP-SGS
F. Cœurdoux’s PhD, N. Dobigeon

▶ PnP-SGS: using a deep denoiser as a prior in SGS

SGS uses Gibbs sampling from conditional posteriors





p (x | y, z) ∝ exp

[
−f1(y, x)−

1

2ρ2
∥x− z∥22

]

p (z | x) ∝ exp

[
−f2(z)−

1

2ρ2
∥x− z∥22

]

where p (z | x) = posterior of a denoiser with reg. ∝ f2(z)

⇓
use a stochastic denoiser to sample from z
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PnP-SGS using a DDPM

DDPM: Denoising Diffusion Probabilistic Models

The forward diffusion process adds noise from t − 1 to t:

p (ut | ut−1) = N
(
ut ;

√
1− β(t)ut−1, β(t)I

)

Learn the backward SDE denoiser from t to t − 1:

qθ (ut−1 | ut) = N (ut−1;µθ (ut , t) ,Σθ (ut , t))
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PnP-SGS using a DDPM

▶ Deep learning
strong expressivity
very efficient for supervised learning
large data set needed

Published as a conference paper at ICLR 2021
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with a continuous-time SDE.
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tion at each intermediate time
step, rx log ptpxq.

et al., 2020). To enable new sampling methods and further extend the capabilities of score-based
generative models, we propose a unified framework that generalizes previous approaches through the
lens of stochastic differential equations (SDEs).

Specifically, instead of perturbing data with a finite number of noise distributions, we consider a
continuum of distributions that evolve over time according to a diffusion process. This process
progressively diffuses a data point into random noise, and is given by a prescribed SDE that does not
depend on the data and has no trainable parameters. By reversing this process, we can smoothly mold
random noise into data for sample generation. Crucially, this reverse process satisfies a reverse-time
SDE (Anderson, 1982), which can be derived from the forward SDE given the score of the marginal
probability densities as a function of time. We can therefore approximate the reverse-time SDE by
training a time-dependent neural network to estimate the scores, and then produce samples using
numerical SDE solvers. Our key idea is summarized in Fig. 1.

Our proposed framework has several theoretical and practical contributions:

Flexible sampling and likelihood computation: We can employ any general-purpose SDE solver
to integrate the reverse-time SDE for sampling. In addition, we propose two special methods not
viable for general SDEs: (i) Predictor-Corrector (PC) samplers that combine numerical SDE solvers
with score-based MCMC approaches, such as Langevin MCMC (Parisi, 1981) and HMC (Neal et al.,
2011); and (ii) deterministic samplers based on the probability flow ordinary differential equation
(ODE). The former unifies and improves over existing sampling methods for score-based models.
The latter allows for fast adaptive sampling via black-box ODE solvers, flexible data manipulation
via latent codes, a uniquely identifiable encoding, and notably, exact likelihood computation.

Controllable generation: We can modulate the generation process by conditioning on information
not available during training, because the conditional reverse-time SDE can be efficiently estimated
from unconditional scores. This enables applications such as class-conditional generation, image
inpainting, colorization and other inverse problems, all achievable using a single unconditional
score-based model without re-training.

Unified framework: Our framework provides a unified way to explore and tune various SDEs for
improving score-based generative models. The methods of SMLD and DDPM can be amalgamated
into our framework as discretizations of two separate SDEs. Although DDPM (Ho et al., 2020) was
recently reported to achieve higher sample quality than SMLD (Song & Ermon, 2019; 2020), we show
that with better architectures and new sampling algorithms allowed by our framework, the latter can
catch up—it achieves new state-of-the-art Inception score (9.89) and FID score (2.20) on CIFAR-10,
as well as high-fidelity generation of 1024 ˆ 1024 images for the first time from a score-based model.
In addition, we propose a new SDE under our framework that achieves a likelihood value of 2.99
bits/dim on uniformly dequantized CIFAR-10 images, setting a new record on this task.

2 BACKGROUND

2.1 DENOISING SCORE MATCHING WITH LANGEVIN DYNAMICS (SMLD)

Let p�px̃ | xq :“ N px̃;x, �2Iq be a perturbation kernel, and p�px̃q :“ ≥
pdatapxqp�px̃ | xqdx, where

pdatapxq denotes the data distribution. Consider a sequence of positive noise scales �min “ �1 †
�2 † ¨ ¨ ¨ † �N “ �max. Typically, �min is small enough such that p�min pxq « pdatapxq, and �max is

2



23/37

PnP-SGS using a DDPM

Starting from noise-free image u0:

p (ut | u0) = N
(
ut ;

√
ᾱ(t)u0, α(t)II

)

where α(t) =
∏t

j=1 (1− β(j)) and ᾱ(t) = 1− α(t).

⇒ Gaussian noise with variance α(t∗)

p (z | x) ∝ exp

[
−f2(z)−

1

2ρ2
∥x− z∥22

]

= Gaussian denoiser

=⇒ z = backward process from ut∗= x =⇒ p (z | x)
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PnP-SGS using a DDPM

Remarks:

▶ noise level α(t∗) ⇐⇒ unique instant t∗

▶ the larger t∗, the noisier the image zt∗ .

Given a current sample x(n) of SGS with noise level σ2
n

t∗ = α−1(σ̂2
n)

using any good conventional estimator σ̂2 = Φ(x(n))

▶ larger t∗ ⇒ higher regularization

(Donoho and Johnstone 1994; Guo et al. 2021; Li et al. 2022)
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Inpainting task
Plug-and-Play and splitting: PnP-SGS - F. Cœurdoux’s PhD, N. Dobigeon - IRIT

Original image - noisy masked - PnP-ADMM - PnP-SGS - 90% cred. int.
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Inpainting task
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original image
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Inpainting task
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noisy masked image
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Inpainting task
Plug-and-Play and splitting: PnP-SGS - F. Cœurdoux’s PhD, N. Dobigeon - IRIT

PnP-SGS MMSE
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Inpainting task
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Inpainting task
Plug-and-Play and splitting: PnP-SGS - F. Cœurdoux’s PhD, N. Dobigeon - IRIT

90% credibility intervals (PnP-SGS)
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Inpainting task: comparisons on FFHQ

Runtime for each algorithm in Wall-clock time
(computed with a single GTX 2080Ti GPU).

Method Wall-clock time (s) Ref.

PnP-ADMM 3.63 Chan et al. (2016)

Score-SDE 36.71 Song et al. (2022)

DDRM 2.03 Kawar et al. (2022)

DPIR 4.18 Zhang et al. (2021)

SGS-ULA 218.90 Vono et al. (2019b)

MCG 80.10 Chung et al. (2023)

DPS 43.89 Chung et al. (2023)

PnP-SGS 13.81 (IEEE Trans. Image Proc. 2024)
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Inpainting task on FFHQ 256×256 & Imagenet images
FFHQ (2 top rows) and Imagenet (2 bottom rows)

obs. truth PnP-SGS SPA DDRM MCG
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FFHQ 256× 256 data set: image reconstruction

PnP-SGS SPA TV-ADMM PnP-ADMM DPIR Score-SDE DDRM MCG DPS

In
p
ai
n
ti
n
g PSNR ↑ 32.59 24.09 22.03 8.41 24.41 13.52 9.19 21.57 25.23

SSIM ↑ 0.913 0.524 0.784 0.325 0.809 0.437 0.319 0.751 0.851

FID ↓ 37.36 71.12 181.56 123.61 52.73 76.54 69.71 29.26 38.82

LPIPS ↓ 0.144 0.785 0.463 0.692 0.398 0.612 0.587 0.286 0.262

D
eb
lu
rr
in
g

(G
au
ss
ia
n
) PSNR ↑ 27.96 23.17 22.37 24.93 26.09 7.12 23.36 6.72 24.25

SSIM ↑ 0.837 0.499 0.801 0.812 0.820 0.109 0.767 0.051 0.811

FID ↓ 59.667 78.67 186.74 90.42 80.18 109.07 74.92 101.2 62.72

LPIPS ↓ 0.331 0.452 0.507 0.441 0.392 0.403 0.332 0.340 0.444

D
eb
lu
rr
in
g

(m
ot
io
n
) PSNR ↑ 28.46 17.73 21.36 24.65 27.33 6.58 N/A 6.72 20.92

SSIM ↑ 0.828 0.211 0.751 0.825 0.814 0.102 N/A 0.055 0.808

FID ↓ 60.01 103.87 152.39 89.08 78.95 292.28 N/A 310.5 56.08

LPIPS ↓ 0.294 0.446 0.508 0.405 0.386 0.657 N/A 0.702 0.389

S
u
p
er
re
s.

(×
4)

PSNR ↑ 25.99 N/A 23.86 25.55 26.14 17.62 25.36 19.97 25.67

SSIM ↑ 0.862 N/A 0.803 0.865 0.889 0.617 0.835 0.703 0.852

FID ↓ 58.82 N/A 110.64 66.52 63.98 96.72 62.15 87.64 52.82

LPIPS ↓ 0.279 N/A 0.428 0.353 0.319 0.563 0.294 0.520 0.337
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FFHQ 256× 256 data set: image reconstruction

PnP-SGS SPA TV-ADMM PnP-ADMM DPIR Score-SDE DDRM MCG DPS

In
p
ai
n
ti
n
g PSNR ↑ 32.59 24.09 22.03 8.41 24.41 13.52 9.19 21.57 25.23

SSIM ↑ 0.913 0.524 0.784 0.325 0.809 0.437 0.319 0.751 0.851

FID ↓ 37.36 71.12 181.56 123.61 52.73 76.54 69.71 29.26 38.82

LPIPS ↓ 0.144 0.785 0.463 0.692 0.398 0.612 0.587 0.286 0.262

D
eb
lu
rr
in
g

(G
au
ss
ia
n
) PSNR ↑ 27.96 23.17 22.37 24.93 26.09 7.12 23.36 6.72 24.25

SSIM ↑ 0.837 0.499 0.801 0.812 0.820 0.109 0.767 0.051 0.811

FID ↓ 59.667 78.67 186.74 90.42 80.18 109.07 74.92 101.2 62.72

LPIPS ↓ 0.331 0.452 0.507 0.441 0.392 0.403 0.332 0.340 0.444

D
eb
lu
rr
in
g

(m
ot
io
n
) PSNR ↑ 28.46 17.73 21.36 24.65 27.33 6.58 N/A 6.72 20.92

SSIM ↑ 0.828 0.211 0.751 0.825 0.814 0.102 N/A 0.055 0.808

FID ↓ 60.01 103.87 152.39 89.08 78.95 292.28 N/A 310.5 56.08

LPIPS ↓ 0.294 0.446 0.508 0.405 0.386 0.657 N/A 0.702 0.389

S
u
p
er
re
s.

(×
4)

PSNR ↑ 25.99 N/A 23.86 25.55 26.14 17.62 25.36 19.97 25.67

SSIM ↑ 0.862 N/A 0.803 0.865 0.889 0.617 0.835 0.703 0.852

FID ↓ 58.82 N/A 110.64 66.52 63.98 96.72 62.15 87.64 52.82

LPIPS ↓ 0.279 N/A 0.428 0.353 0.319 0.563 0.294 0.520 0.337
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Imagenet 256× 256 data set: image reconstruction

PnP-SGS SPA TV-ADMM PnP-ADMM DPIR Score-SDE DDRM MCG DPS

In
p
ai
n
ti
n
g PSNR ↑ 25.22 23.14 20.96 8.39 22.08 18.62 14.29 19.03 18.90

SSIM ↑ 0.870 0.802 0.676 0.300 0.762 0.517 0.403 0.546 0.794

FID ↓ 34.28 41.33 189.3 114.7 37.47 127.1 114.9 39.19 35.87

LPIPS ↓ 0.297 0.323 0.510 0.677 0.448 0.659 0.665 0.414 0.303

D
eb
lu
rr
in
g

(G
au
ss
ia
n
) PSNR ↑ 21.76 21.08 19.99 21.81 21.81 15.97 22.73 16.32 24.25

SSIM ↑ 0.701 0.577 0.634 0.669 0.612 0.436 0.705 0.441 0.811

FID ↓ 64.12 98.78 155.7 100.6 98.1 120.3 63.02 95.04 64.72

LPIPS ↓ 0.399 0.537 0.588 0.519 0.499 0.667 0.427 0.550 0.444

D
eb
lu
rr
in
g

(m
ot
io
n
) PSNR ↑ 21.47 20.49 20.79 21.98 22.49 7.21 N/A 5.89 24.92

SSIM ↑ 0.695 0.681 0.677 0.702 0.731 0.120 N/A 0.037 0.859

FID ↓ 47.57 91.51 138.8 89.76 76.11 98.25 N/A 186.9 56.08

LPIPS ↓ 0.372 0.538 0.525 0.483 0.448 0.591 N/A 0.758 0.389

S
u
p
er
re
s.

(×
4)

PSNR ↑ 24.33 N/A 22.17 23.75 24.30 12.25 24.96 13.39 25.67

SSIM ↑ 0.772 N/A 0.679 0.761 0.769 0.256 0.790 0.227 0.752

FID ↓ 59.09 N/A 130.9 97.27 88.85 170.7 59.57 144.5 50.66

LPIPS ↓ 0.418 N/A 0.523 0.433 0.424 0.701 0.339 0.637 0.337
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PnP-SGS: inference with uncertainty quantification
Plug-and-Play and splitting: F. Cœurdoux’s PhD, N. Dobigeon - IRIT

obs. truth MMSE 90% CI

G. blur

SupRes

motion
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Efficient sampling for high dimensional problems

Nicolas Dobigeon, Florentin Cœurdoux, Maxime Vono



34/37

PnP-SGS: efficient sampling for inverse problems in high
dimensions

▶ SGS & SPA split-and-augment strategy

Bayesian inference for complex models

large scale problems (big & tall)

confidence intervals

▶ Efficient algorithms for sampling: ULA, MALA, MYULA

acceleration of state-of-the-art sampling algorithms

distributed inference (privacy, distr. comput.)

▶ AXDA: unifying statistical framework

asymptotically exact: control parameter ρ

non-asymptotic theoretical guarantees

▶ Capitalizing on ML: trained denoisers
learning from representative samples

State-of-the-art performance
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Prospects

▶ Motivations for PnP-SGS

posterior distribution → Bayesian + MCMC

quantify uncertainty

adapt to any likelihood thanks to splitting

▶ Distributed sampling: fast and scalable: SPMD

localized operators (Thouvenin et al. 2023)

distributed computing

▶ Equivariance: of course!

▶ Theoretical guarantees under mild assumptions?
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AXDA : comparing SPA & ADMM
Connection between MAP and ADMM

By replacing Gibbs sampling steps by optimizations, ADMM
appears:

x(t) ∈ argminx− log p
(
x|z(t−1),u(t−1); ρ

)

z(t) ∈ argminz− log p
(
z|x(t),u(t−1); ρ

)

u(t) = u(t−1) + x(t) − z(t)
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